scholarly journals First Report of Cane Blight on Blackberry Caused by Diaporthe eres in Croatia

Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 612-612 ◽  
Author(s):  
K. Vrandecic ◽  
D. Jurkovic ◽  
J. Cosic ◽  
J. Postic ◽  
L. Riccioni

A cane disease of blackberry (Rubus sp.) cv. Thornfree was observed in May and June 2010 in two growing regions in the eastern part of Slavonia in Croatia. Symptoms consisted of bleached areas between and around cane nodes with some canes showing wilt symptoms. Infected areas were covered with numerous, black pycnidia immersed in the epidermal tissue. Disease occurrence in orchards growing cv. Thornfree ranged between 1 and 15%. Thirty disease samples were collected, disinfected (1 min in 70% ethanol and 2 min in 1% NaOCl), and placed in a moist chamber for 4 days. Fungal sporulating structures were then picked off and placed on potato dextrose agar (PDA). Fungal isolates obtained were identified as a Phomopsis sp., the conidial state of Diaporthe (3), on the basis of cultural and morphological characteristics. Alpha conidia were unicellular, hyaline, fusiform, sometimes tapering toward one or both ends, biguttulate (sometimes with several guttules), and 5.2 to 9.7 × 1.4 to 2.7 μm (average 6.5 × 2.1 μm). Beta conidia were hyaline, aseptate, filiform, hamate, and 16.6 to 28.2 × 0.5 to 1.5 μm (average 24.0 × 1.1 μm). The teleomorph was not observed. Biomolecular analysis was performed to identify the fungal species by sequencing the internal transcribed spacer (ITS) region spanning ITS 1, 5.8S rDNA, and ITS 2 of two isolates (Phk1 and Phk2). The amplified product was sequenced (GenLab-Enea, Rome, Italy) and a BLAST search of the NCBI nucleotide database was performed. Sequences from Phk1 and Phk2 (GenBank Accession Nos. HQ533144 and HQ533143, respectively) were identical to authentic and vouchered Diaporthe eres Nitschke (GenBank DQ491514, BPI 748435, and CBS 109767) ITS sequences in GenBank. Fungal isolates for pathogenicity tests were grown on PDA at 25°C for 7 days (12 h light/dark regimen). Inoculations were made on 30 to 40 cm long green shoots of potted plants of the blackberry cv. Thornfree. One-centimeter long wounds were made with a sterile scalpel and mycelia of D. eres were placed in the wounds. Inoculation sites were covered with a piece of wet cotton wool and aluminum foil to retain moisture. Three replications of 10 plants each were inoculated and these plus 10 control plants (inoculated with plugs of PDA only) were maintained in a growth chamber at 25°C. After 25 days, lesions developed on all 30 inoculated plants that averaged 15 mm long and control plants remained symptomless. D. eres was reisolated from inoculated plants, thus completing Koch's postulates. Phomopsis spp. have previously been reported on blackberry canes in Serbia (1) and Yugoslavia (2,4), however, to our knowledge, this is the first report of the occurrence of D. eres (anamorph P. oblonga) on blackberry in Croatia. References: (1) M. Arsenijevic. Biljni Lekar 34:117, 2006. (2) M. Muntanola-Cvetkovic et al. Zast. Bilja 36:325, 1985. (3) B. C. Sutton. Page 569 in: The Coelomycetes. CMI, Kew, Surrey, UK, 1980. (4) M. Veselic et al. Zast. Bilja 49:76, 1998.

Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Tongke Liu ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Sweet potato [Ipomoea batatas (L.) Lam], is an extremely versatile vegetable that possesses high nutritional values. It is also a valuable medicinal plant having anti-cancer, antidiabetic, and anti-inflammatory activities. In July 2020, leaf spot was observed on leaves of sweet potato in Nanchang, China (28°45'51"N, 115°50'52"E), which affected the growth and development of the crop and caused tuberous roots yield losses of 25%. The disease incidence (total number of diseased plants / total number of surveyed plants × 100%) was 57% from a sampled population of 100 plants in the field. Symptomatic plants initially exhibited small, light brown, irregular-shaped spots on the leaves, subsequently coalescing to form large irregular brown lesions and some lesions finally fell off. Fifteen small pieces (each 5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water and incubated on potato dextrose agar (PDA) plates at 28°C in darkness. A total of seven fungal isolates with similar morphological characteristics were obtained as pure cultures by single-spore isolation. After 5 days of cultivation at 28°C, dark brown or blackish green colonies were observed, which developed brown, thick-walled, simple, or branched, and septate conidiophores. Conidia were 18.28 to 24.91 × 7.46 to 11.69 µm (average 21.27 × 9.48 µm, n = 100) in size, straight or slightly curved, middle cell unequally enlarged, brown to dark brown, apical, and basal cells slightly paler than the middle cells, with three septa. Based on morphological characteristics, the fungal isolates were suspected to be Curvularia plantarum (Raza et al. 2019). To further confirm the identification, three isolates (LGZ1, LGZ4 and LGZ5) were selected for molecular identification. The internal transcribed spacer region (ITS), glyceraldehyde-3-phosphate-dehydrogenase (GAPDH), and translation elongation factor 1-alpha (EF1-α) genes were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004), gpd1/gpd2 (Berbee et al. 1999), EF-983F/EF-2218R (Rehner and Buckley 2005), respectively. The sequences of ITS region of the three isolates (accession nos. MW581905, MZ209268, and MZ227555) shared 100% identity with those of C. plantarum (accession nos. MT410571-72, MN044754-55). Their GAPDH gene sequences were identical (accession nos. MZ224017-19) and shared 100% identity with C. plantarum (accession nos. MN264120, MT432926, and MN053037-38). Similarly, EF1-α gene sequences were identical (accession nos. MZ224020-22) and had 100% identity with C. plantarum (accession nos. MT628901, MN263982-83). A maximum likelihood phylogenetic tree was built based on concatenated data from the sequences of ITS, GAPDH, and EF-1α by using MEGA 5. The three isolates LGZ1, LGZ4, and LGZ5 clustered with C. plantarum. The fungus was identified as C. plantarum by combining morphological and molecular characteristics. Pathogenicity tests were conducted by inoculating a conidial suspension (106 conidia/ml) on three healthy potted I. batatas plants (five leaves wounded with sterile needle of each potted plant were inoculated). In addition, fifteen wounded leaves of three potted plants were sprayed with sterile distilled water as a control. All plants were maintained in a climate box (12 h light/dark) at 25°C with 80% relative humidity. All the inoculated leaves started showing light brown flecks after 7 days, whereas the control leaves showed no symptoms. The pathogenicity test was conducted three times. The fungus was reisolated from all infected leaves of potted plants and confirmed as C. plantarum by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. plantarum causing leaf spot on sweet potato in China. The discovery of this new disease and the identification of the pathogen will contribute to the disease management, provide useful information for reducing economic losses caused by C. plantarum, and lay a foundation for the further research of resistance breeding.


Plant Disease ◽  
2021 ◽  
Author(s):  
Ibatsam Khokhar ◽  
Jianming Chen ◽  
Junhuan Wang ◽  
Yang Jia ◽  
Yanchun Yan ◽  
...  

Lemon (Citrus limon) is one of the most important commercial (both dried and fresh) citrus fruits in China. In the spring of 2019, postharvest blue mold decay was observed at an incidence of 3-5% on lemon fruit at the local markets in Beijing, China. Fruit lesions were circular, brown, soft, and watery, and rapidly expanded at 25°C. To isolate the causal organism, small pieces (2 mm3) were cut from the lesions, surface-sterilized for 1 min in 1.5% NaOCl, rinsed three times with sterilized water, dried with sterile filter paper, placed onto potato dextrose agar (PDA) medium, and incubated at 25°C for 6 days. Eight morphologically similar single-colony fungal isolates were recovered from six lemon fruit. Colony surfaces were bluish-green on the upper surface and cream to yellow-brown one the reverse. Hyphae on colony margins were entirely subsurface and cream in color. Mycelium was highly branched, septate, and colorless, and conidiophores were 250 to 450 × 3.0 to 4.0 µm in size. Stipe of conidiophores were smooth-walled, bearing terminal penicilli, typically terverticillate or less commonly birverticillate, rami occurring singly, 16 to 23 × 3.0 to 4.0 µm, metulae in 3 to 6, measuring 12 to 15 × 3.0 to 4.0 µm. Phialides were ampulliform to almost cylindrical, in verticils of 5 to 8, measuring 8 to 11 × 2.5 to 3.2 µm with collula. Conidia were smooth-walled, ellipsoidal, measuring 3.0 to 3.5 × 2.5 to 3.0 µm. According to morphological characteristics, the fungus was identified as Penicillium expansum (Visagie et al. 2014). For molecular identification, genomic DNA of eight fungal isolates was extracted, regions of the beta-tubulin (TUB), and calmodulin (CAL) genes and ITS region, were amplified using Bt2a/Bt2b, CAL-228F/ CAL-737, and ITS1/ITS4 primers respectively. Obtained sequences of all isolates were identical to sequences of the representative isolate YC-IK12, which was submitted in the GenBank. BLAST results of YC-IK12 sequences (ITS; MT856700: TUB; MT856958: CAL; MT856959) showed 98 to 100% similarity with P. expansum accessions (NR-077154, LN896428, JX141581). For pathogenicity tests, 10 μl of conidial suspension (10 × 105 conidia/ml) from seven-day-old YC-IK12 culture was inoculated using a sterilized needle into the surface of each five asymptomatic disinfected lemons. As a control, three lemons were inoculated using sterile distilled water. All inoculated lemons were placed in plastic containers and incubated at 25°C for 7 days. Decay lesions, identical to the original observations, developed on all inoculated lemons, while control lemons remained asymptomatic. Fungus re-isolated from the inoculated lemon was identified as P. expansum on the basis morphology and Bt2a/Bt2b, CAL-228F/ CAL-737, and ITS1/ITS4 sequences. Previously, Penicillium spp. including P. expansum have been reported as post-harvest pathogens on various Citrus spp. (Louw & Korsten 2015). However, P. digitatum has been reported on lemons and P. expansum has been reported on stored Kiwifruit (Actinidia arguta), Malus, and Pyrus species in China (Tai, 1979; Wang et al. 2015). To our knowledge, this is the first report of blue mold caused by P. expansum on lemons in China. References Louw, J. P., Korsten, L. 2015. Plant Dis. 99:21-30. Tai, F.L. 1979. Sylloge Fungorum Sinicorum. Sci. Press, Acad. Sin., Peking, 1527 pages. 8097 Visagie, C.M. et al. 2014. Studies. Mycol.78: 343. Wang, C. W. et al. 2015. Plant Dis. 99:1037.


Plant Disease ◽  
2013 ◽  
Vol 97 (7) ◽  
pp. 992-992 ◽  
Author(s):  
Y. L. Li ◽  
Z. Zhou ◽  
W. Lu ◽  
J. R. Ye

Sansevieria trifasciata originates from tropical West Africa. It is widely planted as a potted ornamental in China for improving indoor air quality (1). In February 2011, leaves of S. trifasciata plants in an ornamental market of Anle, Luoyang City, China, were observed with sunken brown lesions up to 20 mm in diameter, and with black pycnidia present in the lesions. One hundred potted plants were examined, with disease incidence at 20%. The symptomatic leaves affected the ornamental value of the plants. A section of leaf tissue from the periphery of two lesions from a plant was cut into 1 cm2 pieces, soaked in 70% ethanol for 30 s, sterilized with 0.1% HgCl2 for 2 min, then washed five times in sterilized distilled water. The pieces were incubated at 28°C on potato dextrose agar (PDA). Colonies of two isolates were brown with submerged hyphae, and aerial mycelium was rare. Abundant and scattered pycnidia were reniform, dark brown, and 200 to 350 × 100 to 250 μm. There were two types of setae on the pycnidia: 1) dark brown setae with inward curved tops, and 2) straight, brown setae. Conidia were hyaline, unicellular, cylindrical, and 3.75 to 6.25 × 1.25 to 2.50 μm. Morphological characteristics suggested the two fungal isolates were a Chaetomella sp. To confirm pathogenicity, six mature leaves of a potted S. trifasciata plant were wounded with a sterile pin after wiping each leaf surface with 70% ethanol and washing each leaf with sterilized distilled water three times. A 0.5 cm mycelial disk cut from the margin of a 5-day-old colony on a PDA plate was placed on each pin-wounded leaf, ensuring that the mycelium was in contact with the wound. Non-colonized PDA discs were placed on pin-wounded leaves as the control treatment. Each of two fungal isolates was inoculated on two leaves, and the control treatment was done similarly on two leaves. The inoculated plant was placed in a growth chamber at 28°C with 80% relative humidity. After 7 days, inoculated leaves produced brown lesions with black pycnidia, but no symptoms developed on the control leaves. A Chaetomella sp. was reisolated from the lesions of inoculated leaves, but not from the control leaves. An additional two potted plants were inoculated using the same methods as replications of the experiment, with identical results. To confirm the fungal identification, the internal transcribed spacer (ITS) region of rDNA of the two isolates was amplified using primers ITS1 and ITS4 (2) and sequenced. The sequences were identical (GenBank Accession No. KC515097) and exhibited 99% nucleotide identity to the ITS sequence of an isolate of Chaetomella sp. in GenBank (AJ301961). To our knowledge, this is the first report of a leaf spot of S. trifasciata caused by Chaetomella sp. in China as well as anywhere in the world. References: (1) X. Z. Guo et al. Subtropical Crops Commun. Zhejiang 27:9, 2005. (2) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, San Diego, CA, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 845-845 ◽  
Author(s):  
C. N. Xu ◽  
Z. S. Zhou ◽  
Y. X. Wu ◽  
F. M. Chi ◽  
Z. R. Ji ◽  
...  

Blueberry (Vaccinium spp.) is becoming increasingly popular in China as a nutritional berry crop. With the expansion of blueberry production, many diseases have become widespread in different regions of China. In August of 2012, stem and leaf spots symptomatic of anthracnose were sporadically observed on highbush blueberries in a field located in Liaoning, China, where approximately 15% of plants were diseased. Symptoms first appeared as yellow to reddish, irregularly-shaped lesions on leaves and stems. The lesions then expanded, becoming dark brown in the center and surrounded by a reddish halo. Leaf and stem tissues (5 × 5 mm) were cut from the lesion margins and surface-disinfected in 70% ethanol for 30 s, followed by three rinses with sterile water before placing on potato dextrose agar (PDA). Plates were incubated at 28°C. Colonies were initially white, becoming grayish-white to gray with yellow spore masses. Conidia were one-celled, hyaline, and cylindrical with rounded ends, measuring 15.0 to 25.0 × 4.0 to 7.5 μm. No teleomorph was observed. The fungus was tentatively identified as Colletotrichum gloeosporioides (PenZ.) PenZ & Sacc. (teleomorph Glomerella cingulata (Stoneman) Spauld. & H. Schrenk) based on morphological characteristics of the colony and conidia (1). Genomic DNA was extracted from isolate XCG1 and the internal transcribed spacer (ITS) region of the ribosomal DNA (ITS1–5.8S-ITS2) was amplified with primer pairs ITS1 and ITS4. BLAST searches showed 99% identity with C. gloeosporioides isolates in GenBank (Accession No. AF272779). The sequence of isolate XCG1 (C. gloeosporioides) was deposited into GenBank (JX878503). Pathogenicity tests were conducted on 2-year-old potted blueberries, cv. Berkeley. Stems and leaves of 10 potted blueberry plants were wounded with a sterilized needle and sprayed with a suspension of 105 conidia per ml of sterilized water. Five healthy potted plants were inoculated with sterilized water as control. Dark brown lesions surrounded by reddish halos developed on all inoculated leaves and stems after 7 days, and the pathogen was reisolated from lesions of 50% of inoculated plants as described above. The colony and conidial morphology were identical to the original isolate XCG1. No symptoms developed on the control plants. The causal agent of anthracnose on blueberry was identified as C. gloeosporioides on the basis of morphological and molecular characteristics, and its pathogenicity was confirmed with Koch's postulates. Worldwide, it has been reported that blueberry anthracnose might be caused by C. acutatum and C. gloeosporioides (2). However, we did not isolate C. acutatum during this study. To our knowledge, this is the first report of stem and leaf anthracnose of blueberry caused by C. gloeosporioides in China. References: (1) J. M. E. Mourde. No 315. CMI Descriptions of Pathogenic Fungi and Bacteria. Kew, Surrey, UK, 1971. (2) N. Verma, et al. Plant Pathol. 55:442, 2006.


Plant Disease ◽  
2009 ◽  
Vol 93 (10) ◽  
pp. 1074-1074 ◽  
Author(s):  
K. Vrandecic ◽  
J. Cosic ◽  
D. Jurkovic ◽  
T. Duvnjak ◽  
L. Riccioni

Sunflower (Helianthus annuus L.) is a crop that is grown worldwide for the production of edible oil. In Croatia, it has considerable economic significance. From 2004 to 2007, sunflower stems showed light-to-dark brown lesions of different sizes and shapes. The lesions were observed for the presence of pycnidia in affected areas. Isolations from infected tissue on potato dextrose agar (PDA) yielded in two fungal species. One, which was isolated in most cases, was the well known sunflower pathogen Diaporthe helianthi Munt. Cvet. Morphological characteristics, stromata pattern, formation of alpha and beta conidia, and ascostromata characteristic of the other isolated fungus matched the description of D. phaseolorum (Cooke & Ellis) Sacc. (2). D. phaseolorum frequency was 5%. On PDA, the fungus formed white, floccose, aerial mycelium that filled a petri dish (9 cm) in 6 days. D. phaseolorum produces conidiomata in black stromatic structures, which consist of pycnidia with alpha and beta conidia. The alpha conidia were unicellular, hyaline, ellipsoidal to fusiform, and 5.6 to 10.0 × 1.9 to 4.8 μm. The beta conidia were hyaline, elongated, filiform, straight, curved at one or both ends, and 11.7 to 27.6 × 0.7 to 2.0 μm. After 50 days, perithecia were formed. Asci were clavate and 27.64 to 40.1 × 5.70 to 8.2 μm. Eight ascospores formed within asci. Ascospores were two-celled, elliptic, hyaline, and slightly constricted at the septa, and 8.93 to 13.5 × 2.1 to 4.0 μm. Amplification and sequencing of the internal transcribed spacer (ITS) rDNA region were performed with ITS4 and ITS5 universal primers (3) on two isolates (Su9 and Su10) and data were deposited in GenBank (Accession Nos. GQ149763 and GQ149764). Comparison of sequences available in GenBank revealed that the ITS sequence was identical to D. phaseolorum found on Stokesia laevis Hill (Greene) (U11323/U11373) and identical to the strain CBS 116020 isolated from Aster exilis Elliot. (AY745018). On the basis of the obtained results of morphological characteristics and molecular approaches, the pathogen was identified as D. phaseolorum. Pathogenicity evaluation consisted of artificial infections on field-grown sunflower plants at the full button stage as described by Bertrand and Tourvielle (1). A leaf test was done by placing a mycelial plug of 5 × 5 mm from a cork borer of two isolates (Su9 and Su10) on the tip of the main vein. The inoculation site was covered with moistened, cotton wool and wrapped in aluminum foil to prevent the inoculum from drying out. Ten plants of each of the four replications were inoculated. Control plants were inoculated with pure PDA plugs. Lesions of 12 to 40 mm long were observed on the sunflower leaf 10 days after inoculation. Control plants did not develop symptoms. The pathogen was reisolated from the infected plants. To our knowledge, this is the first report of the finding of D. phaseolorum on sunflower in Croatia and we have no literature data about the occurrence of this fungus on sunflower in the world. References: (1) F. Bertrand and D. Tourvielle. Inf. Tech. CETIOM 98:12,1972. (2) E. Punithalingma and P. Holliday. No. 336 in: Descriptions of Pathogenic Fungi and Bacteria. CMI/CAB, Kew, Surrey, England, 1972. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2015 ◽  
Vol 99 (1) ◽  
pp. 161-161 ◽  
Author(s):  
I. Y. Choi ◽  
S. H. Hong ◽  
S. E. Cho ◽  
J. H. Park ◽  
H. D. Shin

Peucedanum japonicum Thunb., belonging to the family Apiaceae, is distributed in many Asian countries, including Korea. This plant was recently developed as an edible green and is cultivated under organic farming in Korea. In June 2013, plants showing typical symptoms of powdery mildew were found with approximately 50% disease incidence in polyethylene-film-covered greenhouses in Iksan City, Korea. Symptoms first appeared as circular white colonies, which subsequently showed abundant mycelial growth on the leaves, often covering the whole surface. Infected plants were unmarketable mainly due to signs of white fungal growths and reddish discoloration on the leaves. The same symptoms were found on P. japonicum in poly-tunnels in Iksan City and Jinan County of Korea in 2014. Voucher specimens (n = 3) were deposited in the Korea University Herbarium (KUS). Appressoria were lobed, and solitary or in opposite pairs. Conidiophores were cylindrical, 80 to 145 × 8 to 10 μm, and composed of three to four cells. Foot-cells of conidiophores were straight to substraight, cylindrical, and 25 to 63 μm long. Singly produced conidia were oblong-elliptical to oblong, occasionally ovate, 35 to 50 × 13 to 16 μm with a length/width ratio of 2.3:3.1, with angular/rectangular wrinkling of outer walls, and lacked distinct fibrosin bodies. Germ tubes were produced on the perihilar position of conidia. Primary conidia were apically conical, basally truncate, and generally smaller than the secondary conidia. No chasmothecia were found. These structures are typical of the powdery mildew Pseudoidium anamorph of the genus Erysiphe. The specific measurements and morphological characteristics were consistent with those of E. heraclei DC. (2). To confirm the identification, the complete internal transcribed spacer (ITS) region of rDNA from KUS-F27872 was amplified with primers ITS1/ITS4 and sequenced. The resulting 560-bp sequence was deposited in GenBank (Accession No. KM491178). The obtained ITS sequence shared >99% similarity with those of E. heraclei from apiaceous hosts, e.g., Daucus carota (KC480605), Pimpinella affinis (AB104513), and Petroselinum crispum (KF931139). Pathogenicity was confirmed through inoculation by gently dusting conidia onto leaves of five healthy potted plants. Five non-inoculated plants served as controls. Inoculated plants developed symptoms after 6 days, whereas the control plants remained symptomless. The fungus present on the inoculated plants was identical in morphology to those observed in the field. Powdery mildew of P. japonicum caused by E. heraclei has been reported in Japan (4), and numerous reports of E. heraclei on various species of Peucedanum plants have been made in most part of Europe and East Asia (Japan and far eastern Russia) (1,3). However, this is the first report of powdery mildew caused by E. heraclei on P. japonicum in Korea. Occurrence of powdery mildews is a threat to the quality and marketability of this plant, especially in organic farming. References: (1) K. Amano. Host Range and Geographical Distribution of the Powdery Mildew Fungi. Japan Scientific Societies Press, Tokyo, 1986. (2) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (3) D. F. Farr and A. Y. Rossman. Fungal Databases, Syst. Mycol. Microbiol. Lab., online publication. ARS, USDA. Retrieved August 18, 2014. (4) S. Tanda and C. Nakashima. J. Agric. Sci., Tokyo Univ. Agric. 47:54, 2002.


Plant Disease ◽  
2009 ◽  
Vol 93 (11) ◽  
pp. 1216-1216 ◽  
Author(s):  
J. Zhang ◽  
G. Q. Li ◽  
D. H. Jiang

In the spring of each year from 2007 to 2009, a leaf blight of garlic (Allium sativum L.) was observed in more than 50 fields in Zhushan County of Hubei Province, China. Gray mold was observed on many of the blighted garlic leaves. The percentage of garlic plants with blight and gray mold symptoms ranged from 10 to 50% with one to three blighted leaves on each plant, which severely reduced the yield of young garlic plants (produced as a green vegetable). Ten strains of a Botrytis sp. were isolated from symptomatic garlic leaves collected from 10 different fields. These strains were inoculated onto potato dextrose agar (PDA) in petri dishes and incubated at 20°C for 3 to 15 days for observation of colony characteristics and morphology of sclerotia and conidia. All 10 Botrytis strains formed flat and “ropy” mycelia (mycelial strands) on PDA. Abundant sporulation with a gray powdery appearance was observed on the colonies after 6 days. Conidiophores were erect with alternate branches at the top and ranged from 907 to 1,256 μm high. Conidia were borne in botryose clusters on conidiophores, obovate, and 10.4 to 17.6 × 7.6 to 13.1 μm with an average length/width ratio of 1.36. Discrete sclerotia were produced on each colony after 15 days. Mature sclerotia were black, cerebriform and convoluted, and 1.9 to 9.1 × 1.6 to 6.5 mm. Morphological characteristics of the colonies, conidia, and sclerotia of these Botrytis strains were similar to Botrytis porri Buchwald (1,2). Strain GarlicBC-16 was selected as a representative for molecular identification. Genomic DNA was extracted from mycelia of this strain and used as a template for amplification of the internal transcribed spacer (ITS) region of rDNA using primer pair ITS1/ITS4. A 539-bp amplicon was obtained and sequenced (GenBank Accession No. EU519206). Excluding the flanking regions, the amplicon contained a 453-bp ITS sequence (ITS1 + 5.8S rDNA + ITS2) 100% identical to the ITS sequence of strain MUCL3234 of B. porri (GenBank Accession No. AJ716292). Pathogenicity of strain GarlicBC-16 was tested by inoculation of 10 young and fully expanded garlic leaves taken from 100-day-old garlic plants with mycelial agar plugs (three plugs per leaf and spaced by 5 cm). Ten garlic leaves inoculated with agar plugs of PDA alone served as controls. Inoculated garlic leaves were covered with a plastic film (0.1 mm thick; Gold Mine Plastic Industrial Ltd. Jiangmen, China) and incubated at 20°C with 12-h light/12-h dark. Control leaves remained healthy after 48 to 120 h, but gray, water-soaked lesions appeared on leaves inoculated with strain GarlicBC-16 after 48 h. The average lesion length reached 27.3 mm after 90 h and abundant sporulation was produced on necrotic leaf lesions after 120 h. Microscopic examination showed the shape and size of conidia that formed on garlic leaf lesions were similar to those formed by strain GarlicBC-16 on PDA. On the basis of the isolation, identification, and pathogenicity tests, B. porri was determined to be the causal agent of garlic leaf blight in Zhushan County. B. porri has been reported to cause neck rot of leek (A. porrum) (1) and clove rot of garlic (2), and has been isolated from asymptomatic foliage and seeds of A. cepa (3). To our knowledge, this is the first report of garlic leaf blight caused by B. porri in China. References: (1) S. K. Asiedu et al. Plant Dis. 70:259, 1986. (2) F. M. Dugan et al. J. Phytopathol. 155:437. 2007. (3) L. J. du Toit et al. Plant Dis. 86:1178, 2002.


Plant Disease ◽  
2011 ◽  
Vol 95 (5) ◽  
pp. 616-616 ◽  
Author(s):  
J. Kim ◽  
O. Choi ◽  
J.-H. Kwon

Sweet persimmon (Diospyros kaki L.), a fruit tree in the Ebenaceae, is cultivated widely in Korea and Japan, the leading producers worldwide (2). Sweet persimmon fruit with flyspeck symptoms were collected from orchards in the Jinju area of Korea in November 2010. The fruit had fungal clusters of black, round to ovoid, sclerotium-like fungal bodies with no visible evidence of a mycelial mat. Orchard inspections revealed that disease incidence ranged from 10 to 20% in the surveyed area (approximately 10 ha) in 2010. Flyspeck symptoms were observed on immature and mature fruit. Sweet persimmon fruit peels with flyspeck symptoms were removed, dried, and individual speck lesions transferred to potato dextrose agar (PDA) and cultured at 22°C in the dark. Fungal isolates were obtained from flyspeck colonies on 10 sweet persimmon fruit harvested from each of three orchards. Fungal isolates that grew from the lesions were identified based on a previous description (1). To confirm identity of the causal fungus, the complete internal transcribed spacer (ITS) rDNA sequence of a representative isolate was amplified and sequenced using primers ITS1 and ITS4 (4). The resulting 552-bp sequence was deposited in GenBank (Accession No. HQ698923). Comparison with ITS rDNA sequences showed 100% similarity with a sequence of Zygophiala wisconsinensis Batzer & Crous (GenBank Accession No. AY598855), which infects apple. To fulfill Koch's postulates, mature, intact sweet persimmon fruit were surface sterilized with 70% ethanol and dried. Three fungal isolates from this study were grown on PDA for 1 month. A colonized agar disc (5 mm in diameter) of each isolate was cut from the advancing margin of a colony with a sterilized cork borer, transferred to a 1.5-ml Eppendorf tube, and ground into a suspension of mycelial fragments and conidia in a blender with 1 ml of sterile, distilled water. The inoculum of each isolate was applied by swabbing a sweet persimmon fruit with the suspension. Three sweet persimmon fruit were inoculated per isolate. Three fruit were inoculated similarly with sterile, distilled water as the control treatment. After 1 month of incubation in a moist chamber at 22°C, the same fungal fruiting symptoms were reproduced as observed in the orchards, and the fungus was reisolated from these symptoms, but not from the control fruit, which were asymptomatic. On the basis of morphological characteristics of the fungal colonies, ITS sequence, and pathogenicity to persimmon fruit, the fungus was identified as Z. wisconsinensis (1). Flyspeck is readily isolated from sweet persimmon fruit in Korea and other sweet persimmon growing regions (3). The exposure of fruit to unusual weather conditions in Korea in recent years, including drought, and low-temperature and low-light situations in late spring, which are favorable for flyspeck, might be associated with an increase in occurrence of flyspeck on sweet persimmon fruit in Korea. To our knowledge, this is the first report of Z. wisconsinensis causing flyspeck on sweet persimmon in Korea. References: (1) J. C. Batzer et al. Mycologia 100:246, 2008. (2) FAOSTAT Database. Retrieved from http://faostat.fao.org/ , 2008. (3) H. Nasu and H. Kunoh. Plant Dis. 71:361, 1987. (4) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. M. A. Innis et al., eds. Academic Press, Inc., New York, 1990.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1654-1654 ◽  
Author(s):  
A. L. Vu ◽  
M. M. Dee ◽  
J. Zale ◽  
K. D. Gwinn ◽  
B. H. Ownley

Knowledge of pathogens in switchgrass, a potential biofuels crop, is limited. In December 2007, dark brown to black irregularly shaped foliar spots were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) on the campus of the University of Tennessee. Symptomatic leaf samples were surface-sterilized (95% ethanol, 1 min; 20% commercial bleach, 3 min; 95% ethanol, 1 min), rinsed in sterile water, air-dried, and plated on 2% water agar amended with 3.45 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). A sparsely sporulating, dematiaceous mitosporic fungus was observed. Fungal plugs were transferred to surface-sterilized detached ‘Alamo’ leaves on sterile filter paper in a moist chamber to increase spore production. Conidia were ovate, oblong, mostly straight to slightly curved, and light to olive-brown with 3 to 10 septa. Conidial dimensions were 12.5 to 17 × 27.5 to 95 (average 14.5 × 72) μm. Conidiophores were light brown, single, multiseptate, and geniculate. Conidial production was polytretic. Morphological characteristics and disease symptoms were similar to those described for Bipolaris oryzae (Breda de Haan) Shoemaker (2). Disease assays were done with 6-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized in 50% bleach. Nine 9 × 9-cm square pots with approximately 20 plants per pot were inoculated with a mycelial slurry (due to low spore production) prepared from cultures grown on potato dextrose agar for 7 days. Cultures were flooded with sterile water and rubbed gently to loosen mycelium. Two additional pots were inoculated with sterile water and subjected to the same conditions to serve as controls. Plants were exposed to high humidity by enclosure in a plastic bag for 72 h. Bags were removed, and plants were incubated at 25/20°C with 50 to 60% relative humidity. During the disease assay, plants were kept in a growth chamber with a 12-h photoperiod of fluorescent and incandescent lighting. Foliar leaf spot symptoms appeared 5 to 14 days post-inoculation for eight of nine replicates. Control plants had no symptoms. Symptomatic leaf tissue was processed and plated as described above. The original fungal isolate and the pathogen recovered in the disease assay were identified using internal transcribed spacer (ITS) region sequences. The ITS region of rDNA was amplified with PCR and primer pairs ITS4 and ITS5 (4). PCR amplicons of 553 bp were sequenced, and sequences from the original isolate and the reisolated pathogen were identical (GenBank Accession No. JQ237248). The sequence had 100% nucleotide identity to B. oryzae from switchgrass in Mississippi (GU222690, GU222691, GU222692, and GU222693) and New York (JF693908). Leaf spot caused by B. oryzae on switchgrass has also been described in North Dakota (1) and was seedborne in Mississippi (3). To our knowledge, this is the first report of B. oryzae from switchgrass in Tennessee. References: (1) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved from http://nt.ars-grin.gov/fungaldatabases/, 28 June 2012. (2) J. M. Krupinsky et al. Can. J. Plant Pathol. 26:371, 2004. (3) M. Tomaso-Peterson and C. J. Balbalian. Plant Dis. 94:643, 2010. (4) T. J. White et al. Pages 315-322 in: PCR Protocols: a Guide to Methods and Applications. M. A. Innis et al. (eds), Acad. Press, San Diego, 1990.


Plant Disease ◽  
2021 ◽  
Author(s):  
Jiahao Lai ◽  
Guihong Xiong ◽  
Bing Liu ◽  
Weigang Kuang ◽  
Shuilin Song

Blueberry (Vaccinium virgatum), an economically important small fruit crop, is characterized by its highly nutritive compounds and high content and wide diversity of bioactive compounds (Miller et al. 2019). In September 2020, an unknown leaf blight disease was observed on Rabbiteye blueberry at the Agricultural Science and Technology Park of Jiangxi Agricultural University in Nanchang, China (28°45'51"N, 115°50'52"E). Disease surveys were conducted at that time, the results showed that disease incidence was 90% from a sampled population of 100 plants in the field, and this disease had not been found at other cultivation fields in Nanchang. Leaf blight disease on blueberry caused the leaves to shrivel and curl, or even fall off, which hindered floral bud development and subsequent yield potential. Symptoms of the disease initially appeared as irregular brown spots (1 to 7 mm in diameter) on the leaves, subsequently coalescing to form large irregular taupe lesions (4 to 15 mm in diameter) which became curly. As the disease progressed, irregular grey-brown and blighted lesion ran throughout the leaf lamina from leaf tip to entire leaf sheath and finally caused dieback and even shoot blight. To identify the causal agent, 15 small pieces (5 mm2) of symptomatic leaves were excised from the junction of diseased and healthy tissue, surface-sterilized in 75% ethanol solution for 30 sec and 0.1% mercuric chloride solution for 2 min, rinsed three times with sterile distilled water, and then incubated on potato dextrose agar (PDA) at 28°C for 5-7 days in darkness. Five fungal isolates showing similar morphological characteristics were obtained as pure cultures by single-spore isolation. All fungal colonies on PDA were white with sparse creeping hyphae. Pycnidia were spherical, light brown, and produced numerous conidia. Conidia were 10.60 to 20.12 × 1.98 to 3.11 µm (average 15.27 × 2.52 µm, n = 100), fusiform, sickle-shaped, light brown, without septa. Based on morphological characteristics, the fungal isolates were suspected to be Coniella castaneicola (Cui 2015). To further confirm the identity of this putative pathogen, two representative isolates LGZ2 and LGZ3 were selected for molecular identification. The internal transcribed spacer region (ITS) and large subunit (LSU) were amplified and sequenced using primers ITS1/ITS4 (Peever et al. 2004) and LROR/LR7 (Castlebury and Rossman 2002). The sequences of ITS region (GenBank accession nos. MW672530 and MW856809) showed 100% identity with accessions numbers KF564280 (576/576 bp), MW208111 (544/544 bp), MW208112 (544/544 bp) of C. castaneicola. LSU gene sequences (GenBank accession nos. MW856810 to 11) was 99.85% (1324/1326 bp, 1329/1331 bp) identical to the sequences of C. castaneicola (KY473971, KR232683 to 84). Pathogenicity was tested on three blueberry varieties (‘Rabbiteye’, ‘Double Peak’ and ‘Pink Lemonade’), and four healthy young leaves of a potted blueberry of each variety with and without injury were inoculated with 20 μl suspension of prepared spores (106 conidia/mL) derived from 7-day-old cultures of LGZ2, respectively. In addition, four leaves of each variety with and without injury were sprayed with sterile distilled water as a control, respectively. The experiment was repeated three times, and all plants were incubated in a growth chamber (a 12h light and 12h dark period, 25°C, RH greater than 80%). After 4 days, all the inoculated leaves started showing disease symptoms (large irregular grey-brown lesions) as those observed in the field and there was no difference in severity recorded between the blueberry varieties, whereas the control leaves showed no symptoms. The fungus was reisolated from the inoculated leaves and confirmed as C. castaneicola by morphological and molecular identification, fulfilling Koch’s postulates. To our knowledge, this is the first report of C. castaneicola causing leaf blight on blueberries in China. The discovery of this new disease and the identification of the pathogen will provide useful information for developing effective control strategies, reducing economic losses in blueberry production, and promoting the development of the blueberry industry.


Sign in / Sign up

Export Citation Format

Share Document