scholarly journals Mefenoxam Sensitivity in Phytophthora cinnamomi Isolates

Plant Disease ◽  
2010 ◽  
Vol 94 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Jiahuai Hu ◽  
Chuanxue Hong ◽  
Erik L. Stromberg ◽  
Gary W. Moorman

Phytophthora cinnamomi is a destructive root pathogen of numerous woody plant species in the ornamental plant nursery. Sixty-five isolates of P. cinnamomi were evaluated for mefenoxam sensitivity on 20% clarified V8 agar amended with mefenoxam at 0 or 100 μg/ml. In the presence of mefenoxam at 100 μg/ml, eight isolates were intermediately sensitive, with mycelium growth ranging between 11 and 18% of the nonamended control, and 57 isolates were highly sensitive, with little or no mycelium growth. Five intermediately sensitive and five sensitive isolates were chosen to characterize their responses to mefenoxam at 0, 0.1, 1, 10, and 100 μg/ml. For intermediately sensitive isolates, the mefenoxam concentration causing 50% inhibition of mycelium growth (EC50 values) ranged between 0.03 and 0.08 μg/ml; EC50 values for sensitive isolates varied from 0.01 to 0.02 μg/ml. Five intermediately sensitive and seven sensitive isolates were selected further to assess in vivo sensitivity to mefenoxam using Lupinus angustifolius ‘Russell Hybrids’. Lupine seedlings were treated with distilled water or mefenoxam at label rate (Subdue MAXX, 1 fl. oz. of product per 100 gal.) and then, 2 days later, inoculated with a 5-mm-diameter mycelial plug of P. cinnamomi on each cotyledon. Mefenoxam-treated plants averaged more than 96% less disease than water-treated plants. Mefenoxam provided adequate protection of lupines from infection by all 12 isolates regardless of their in vitro levels of sensitivity to mefenoxam. The ability to develop mefenoxam resistance was assessed in P. cinnamomi isolates with different mefenoxam sensitivity by UV mutagenesis and adapting mycelium to increasing concentrations of mefenoxam. Both UV mutagenesis and mycelium adaptation generated isolates with reduced sensitivity to mefenoxam. These isolates, however, did not grow as quickly as their corresponding parent. This study suggests that P. cinnamomi populations from ornamental nurseries in Virginia are sensitive to mefenoxam.

Genetics ◽  
2000 ◽  
Vol 154 (2) ◽  
pp. 503-512 ◽  
Author(s):  
Hongbo Liu ◽  
Stephen R Hewitt ◽  
John B Hays

Abstract Previous studies have demonstrated that the Escherichia coli MutHLS mismatch-repair system can process UV-irradiated DNA in vivo and that the human MSH2·MSH6 mismatch-repair protein binds more strongly in vitro to photoproduct/base mismatches than to “matched” photoproducts in DNA. We tested the hypothesis that mismatch repair directed against incorrect bases opposite photoproducts might reduce UV mutagenesis, using two alleles at E. coli lacZ codon 461, which revert, respectively, via CCC → CTC and CTT → CTC transitions. F′ lacZ targets were mated from mut+ donors into mutH, mutL, or mutS recipients, once cells were at substantial densities, to minimize spontaneous mutation prior to irradiation. In umu+ mut+ recipients, a range of UV fluences induced lac+ revertant frequencies of 4–25 × 10−8; these frequencies were consistently 2-fold higher in mutH, mutL, or mutS recipients. Since this effect on mutation frequency was unaltered by an Mfd− defect, it appears not to involve transcription-coupled excision repair. In mut+ umuC122::Tn5 bacteria, UV mutagenesis (at 60 J/m2) was very low, but mutH or mutL or mutS mutations increased reversion of both lacZ alleles roughly 25-fold, to 5–10 × 10−8. Thus, at UV doses too low to induce SOS functions, such as Umu2′D, most incorrect bases opposite occasional photoproducts may be removed by mismatch repair, whereas in heavily irradiated (SOS-induced) cells, mismatch repair may only correct some photoproduct/base mismatches, so UV mutagenesis remains substantial.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 285
Author(s):  
Manuela Rodríguez-Romero ◽  
Belén Godoy-Cancho ◽  
Isabel M. Calha ◽  
José António Passarinho ◽  
Ana Cristina Moreira

The ability of three herbaceous plants (Diplotaxis tenuifolia (L.) DC., Eruca vesicaria L. and Raphanus raphanistrum L.) from Iberian wood pastures to reduce Phytophthora cinnamomi Rands pathogen populations through allelopathic relationships is studied. The inhibitory capacity of their aqueous root extracts (AREs) on mycelial growth and production of P. cinnamomi reproductive structures is analysed in vitro. In addition, Quercus seedlings were grown in infested by P. cinnamomi-soils and with the presence or absence of allelopathic and susceptible herb species to the pathogen to assess the defensive chemical response of Quercus seedlings through their leaf phenolic compounds. Results show a strong inhibitory capacity of AREs on P. cinnamomi activity in vitro and a protective effect of these herb species on Quercus plants against P. cinnamomi in vivo. D. tenuifolia would be especially suited for biological control in the pathogen suppression.


2021 ◽  
pp. 1-13
Author(s):  
Jonas Folke ◽  
Sertan Arkan ◽  
Isak Martinsson ◽  
Susana Aznar ◽  
Gunnar Gouras ◽  
...  

Background: α-synuclein (α-syn) aggregation contributes to the progression of multiple neurodegenerative diseases. We recently found that the isoform b of the co-chaperone DNAJB6 is a strong suppressor of a-syn aggregation in vivo and in vitro. However, nothing is known about the role of the endogenous isoform b of DNAJB6 (DNAJB6b) in health and disease, due to lack of specific antibodies. Objective: Here we generated a novel anti-DNAJB6b antibody to analyze the localization and expression this isoform in cells, in tissue and in clinical material. Methods: To address this we used immunocytochemistry, immunohistochemistry, as well as a novel quantitative DNAJB6 specific ELISA method. Results: The endogenous protein is mainly expressed in the cytoplasm and in neurites in vitro, where it is found more in dendrites than in axons. We further verified in vivo that DNAJB6b is expressed in the dopaminergic neurons of the substantia nigra pars compacta (SNpc), which is a neuronal subpopulation highly sensitive to α-syn aggregation, that degenerate to a large extend in patients with Parkinson’s disease (PD) and multiple system atrophy (MSA). When we analyzed the expression levels of DNAJB6b in brain material from PD and MSA patients, we found a downregulation of DNAJB6b by use of ELISA based quantification. Interestingly, this was also true when analyzing tissue from patients with progressive supranuclear palsy, a taupathic atypical parkinsonian disorder. However, the total level of DNAJB6 was upregulated in these three diseases, which may indicate an upregulation of the other major isoform of DNAJB6, DNAJB6a. Conclusion: This study shows that DNAJB6b is downregulated in several different neurodegenerative diseases, which makes it an interesting target to further investigate in relation to amyloid protein aggregation and disease progression.


The Analyst ◽  
2019 ◽  
Vol 144 (12) ◽  
pp. 3807-3816 ◽  
Author(s):  
Xiaojun He ◽  
Chenglin Wu ◽  
Yuna Qian ◽  
Yahui Li ◽  
Lilei Zhang ◽  
...  

Here reported an NBDT sensor could be effectively responsive to gallium and chromium for bio-imaging in vivo.


2019 ◽  
Vol 32 (6) ◽  
pp. 829-841 ◽  
Author(s):  
Valérie Petit ◽  
Jeremy Raymond ◽  
Christophe Alberti ◽  
Marie Pouteaux ◽  
Stuart J. Gallagher ◽  
...  

1996 ◽  
Vol 271 (4) ◽  
pp. H1340-H1347 ◽  
Author(s):  
A. Decarie ◽  
P. Raymond ◽  
N. Gervais ◽  
R. Couture ◽  
A. Adam

Among the different enzymes responsible for the metabolism of bradykinin (BK), three peptidases look relevant in vivo: kininase I (KI), which transforms BK into its active metabolite, [des-Arg9]BK; kininase II (KII); and neutral endopeptidase, which inactivate BK and [des-Arg9]BK. The in vitro incubation of BK and [des-Arg9]BK in the serum of four species with or without enalaprilat and the quantification of the immunoreactivity of both peptides at different time intervals allowed the measurement of the kinetic parameters characterizing their metabolic pathways. Highly sensitive chemiluminescent enzyme immunoassays were used to measure the residual concentrations of BK and [des-Arg9]BK. Half-life (t1/2) of BK showed significant difference among species: rats (10 +/- 1 s) = dogs (13 +/- 1 s) < rabbits (31 +/- 1 s) < humans (49 +/- 2 s). t1/2 values of [des-Arg9]BK were also species dependent: rats (96 +/- 6 s) < < rabbits (314 +/- 6 s) = dogs (323 +/- 11 s) = humans (325 +/- 12 s). Enalaprilat significantly prevented the rapid BK and [des-Arg9]BK degradation in all species except that of [des-Arg9]BK in rat serum. Relative amount of BK hydrolyzed by serum KII was given as follows: rabbits (93.7 +/- 14.8%) = rats (83.6 +/- 6.7%) = humans (76.0 +/- 7.5%) > dogs (50.0 +/- 3.9%). Its importance in the hydrolysis of [des-Arg9]BK was 5.2 +/- 0.5% in rats < < 33.9 +/- 1.5% in humans < 52.0 +/- 1.1% in rabbits < 65.1 +/- 3.4% in dogs. The participation of serum KI in the transformation of BK into [des-Arg9]BK was dogs (67.2 +/- 5.3%) > > humans (3.4 +/- 1.2%) = rabbits (1.8 +/- 0.2%) = rats (1.4 +/- 0.3%). Finally, no significant difference on t1/2 values for BK and [des-Arg9]BK could be demonstrated between serum and plasma treated with either sodium citrate or a thrombin inhibitor. These results revealed striking species differences in the serum metabolism of kinins that could address at least partially some of the controversial data related to the cardioprotective role of kinins.


2016 ◽  
Vol 15 (6) ◽  
pp. 729-731 ◽  
Author(s):  
Xue Hui-Ying ◽  
Zhang Da-Hong ◽  
Ji Li-Juan ◽  
Lu Xiao-Jie

Deletion of oncosuppressors occurs frequently in the cancer genome. A great deal of effort has been made to therapeutically restore the lost function of oncosuppressors, with little clinically translatable success, however. Reassuringly, besides the disappointing restoration endeavors, oncosuppressor loss can be therapeutically exploited in several other ways, such as the “synthetic lethality” strategies and the “therapeutic vulnerability” created by codeletion of neighboring genes. The study by Liu et al showed that codeletion of p53 and a neighboring essential gene POLR2A rendered colon cancer cells highly sensitive to further inhibition of POLR2A both in vitro and in vivo. In recent years, several studies have reported similar phenomenon in a wide range of cancer types. In this focus article, we will introduce several kinds of anticancer opportunities created by the loss of oncosuppressors and discuss their mechanisms. Given the frequency of oncosuppressor loss in cancer, its therapeutic exploitation rather merits further investigation and may open a new window for oncotherapy.


2004 ◽  
Vol 286 (2) ◽  
pp. L363-L372 ◽  
Author(s):  
Baljit Singh ◽  
Jacqueline W. Pearce ◽  
Lakshman N. Gamage ◽  
Kyathanahalli Janardhan ◽  
Sarah Caldwell

Pulmonary intravascular macrophages (PIMs) are present in ruminants and horses. These species are highly sensitive to acute lung inflammation compared with non-PIM-containing species such as rats and humans. There is evidence that rats and humans may also recruit PIMs under certain conditions. We investigated precise contributions of PIMs to acute lung inflammation in a calf model. First, PIMs were recognized with a combination of in vivo phagocytic tracer Monastral blue and postembedding immunohistology with anti-CD68 monoclonal antibody. Second, gadolinium chloride depleted PIMs within 48 h of treatment ( P < 0.05). Finally, PIMs contain TNF-α, and their depletion reduces cells positive for IL-8 ( P < 0.05) and TNF-α ( P < 0.05) and histopathological signs of acute lung inflammation in calves infected with Mannheimia hemolytica. The majority of IL-8-positive inflammatory cells in lung septa of infected calves were platelets. Platelets from normal cattle contained preformed IL-8 that was released upon in vitro exposure to thrombin ( P < 0.05). These novel data show that PIMs, as the source of TNF-α, promote recruitment of inflammatory cells including IL-8-containing platelets to stimulate acute inflammation and pathology in lungs. These data may also be relevant to humans due to our ability to recruit PIMs.


2003 ◽  
Vol 71 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Valorie C. Burns ◽  
Elizabeth J. Pishko ◽  
Andrew Preston ◽  
Duncan J. Maskell ◽  
Eric T. Harvill

ABSTRACT Lipopolysaccharide (LPS), as the major surface molecule of gram-negative bacteria, interacts with the host in complex ways, both inducing and protecting against aspects of inflammatory and adaptive immunity. The membrane-distal repeated carbohydrate structure of LPS, the O antigen, can prevent antibody functions and may vary as a mechanism of immune evasion. Genes of the wbm locus are required for the assembly of O antigen on the animal pathogen Bordetella bronchiseptica and the human pathogen B. parapertussis. However, the important human pathogen B. pertussis lacks these genes and a number of in vitro and in vivo characteristics associated with O antigen in other organisms. To determine the specific functions of O antigen in these closely related Bordetella subspecies, we compared wbm deletion (Δwbm) mutants of B. bronchiseptica and B. parapertussis in a variety of assays relevant to natural respiratory tract infection. Complement was not activated or depleted by wild-type bordetellae expressing O antigen, but both Δwbm mutants activated complement and were highly sensitive to complement-mediated killing in vitro. Although the O-antigen structures appear to be substantially similar, the two mutants differed strikingly in their defects within the respiratory tract. The B. parapertussis Δwbm mutant was severely defective in colonization of the tracheas and lungs of mice, while the B. bronchiseptica Δwbm mutant showed almost no defect. While in vitro characteristics such as serum resistance may be attributable to O antigen directly, the role of O antigen during infection appears to be more complex, possibly involving factors differing among the closely related bordetellae or different interactions between each one and its host.


2009 ◽  
Vol 7 (42) ◽  
pp. 3-18 ◽  
Author(s):  
Shan Jiang ◽  
Muthu Kumara Gnanasammandhan ◽  
Yong Zhang

The diagnosis and treatment of cancer have been greatly improved with the recent developments in nanotechnology. One of the promising nanoscale tools for cancer diagnosis is fluorescent nanoparticles (NPs), such as organic dye-doped NPs, quantum dots and upconversion NPs that enable highly sensitive optical imaging of cancer at cellular and animal level. Furthermore, the emerging development of novel multi-functional NPs, which can be conjugated with several functional molecules simultaneously including targeting moieties, therapeutic agents and imaging probes, provides new potentials for clinical therapies and diagnostics and undoubtedly will play a critical role in cancer therapy. In this article, we review the types and characteristics of fluorescent NPs, in vitro and in vivo imaging of cancer using fluorescent NPs and multi-functional NPs for imaging-guided cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document