scholarly journals Powdery Mildew of Spearmint Caused by Erysiphe orontii in California

Plant Disease ◽  
1999 ◽  
Vol 83 (4) ◽  
pp. 399-399 ◽  
Author(s):  
S. T. Koike ◽  
G. S. Saenz

In 1997 and 1998, the white fungal growth of a powdery mildew was observed on leaves and stems of both nursery and landscape spearmint (Mentha spicata) growing in coastal California (Monterey County). Mycelia were conspicuous, amphigenous, and epiphytic with indistinct to nipple-shaped appressoria. Conidiophore foot cells were cylindrical, straight, nonconstricted at the base, 61 to 92 μm × 11 to 14 μm in size, and were followed by 1 to 3 cells. Doliiform conidia, which were borne in chains of at least 3 to 5 conidia, measured 28 to 33 μm × 17 to 22 μm. Catenate conidia had sinuate edge lines. Conidia lacked fibrosin bodies. Upon germination, conidia produced germ tubes that were mostly apically inserted and ended in club-shaped appressoria, which fit Braun's Cichoracearum-type of conidial germination (1). Cleistothecia were not observed. Based on these features, the pathogen was identified as Erysiphe orontii Cast. (1). Pathogenicity was demonstrated by gently pressing diseased leaves onto leaves of potted spearmint, incubating plants in a humidity chamber for 48 h, then maintaining plants in a greenhouse. The powdery mildew that later developed was morphologically identical to the original isolates. While powdery mildew on spearmint has been observed previously in the state, this is the first report of the disease and first characterization of the pathogen for California. Reference: (1) U. Braun. Beih. Nova Hedwigia 89:1, 1987.

Plant Disease ◽  
1998 ◽  
Vol 82 (6) ◽  
pp. 711-711 ◽  
Author(s):  
S. T. Koike ◽  
R. F. Smith

Tomatillo or husk tomato (Physalis ixocarpa Brot.) is an annual Solanaceous bush grown for its fruit, which are harvested when the fruit fill the enlarged calyx and are used primarily in Hispanic cooking. In the summer of 1997, commercial field-grown tomatillo in the Salinas Valley (Monterey County) was severely affected by a powdery mildew disease. Fungal growth was found on leaves, petioles, and calyces and resulted in twisting, desiccation, and premature senescence of the tissues. The mycelium was white to gray, ectophytic, amphigenous, and effuse. Mycelial appressoria were indistinct. Conidiophore foot cells were straight, cylindric, measured 36.1 to 61.1 µm (mean 47.0) × 11.1 to 13.9 µm (mean 11.7), and were followed by 1 to 3 shorter cells. Doliform conidia were formed in chains and measured 25.0 to 50.0 µm (mean 32.5) × 11.1 to 22.2 µm (mean 17.7). The length-to-width ratios of conidia generally were less than 2.0, and fibrosin bodies were present. Germ tubes usually were laterally inserted, lacked conspicuous appressoria, and were of the pannosa-type. Cleistothecia were not observed. Based on these characters, the fungus was identified as Sphaerotheca fusca (Fr.) Blumer, Beitr. Krypt.-Fl. Schweiz (1). Pathogenicity was confirmed by gently pressing infected leaves onto leaves of potted tomatillo. Inoculated plants were kept in a chamber at 100% humidity for 48 h, and then maintained in a greenhouse. Powdery mildew developed on inoculated plants after 12 to 14 days, while uninoculated plants did not develop disease. The experiment was conducted a second time and the results were the same. This is the first report of a powdery mildew disease of tomatillo in California. Reference: (1) U. Braun. Nova Hedwigia 89:1, 1987.


Plant Disease ◽  
2000 ◽  
Vol 84 (9) ◽  
pp. 1048-1048 ◽  
Author(s):  
G. S. Saenz ◽  
S. T. Koike ◽  
N. Shishkoff

Gray-leaved Euryops (Euryops pectinatus Cass., Asteraceae) is an evergreen shrub that is widely planted in landscapes in the United States. In the fall of 1999, powdery mildew was observed on E. pectinatus planted in landscapes in Redlands (San Bernardino County), CA. Symptoms consisted only of slight cupping of leaves. Fungal growth was observed on stems, leaves, petioles, and pedicels and was ectophytic and amphigenous. The white mycelium was patchy to effuse. Hyphal appressoria were indistinct (1). Conidiophore foot cells were cylindric and sometimes were tapered toward or constricted at the base. Foot cells measured 30 to 50 by 10 to 12 μm and were followed by one to two shorter cells. Conidia were cylindric to slightly doliform, borne in chains of two to three, and measured 26 to 38 by 14 to 18 μm. Conidial length to width ratios ranged from 1.7 to 2.4. Catenate conidia had crenate edge lines (3). Conidia possessed conspicuous fibrosin bodies and from their sides produced short germ tubes without appressoria. Cleistothecia were not observed. Based on these characters, the fungus was identified as Podosphaera fusca (Fr.) U. Braun & N. Shishkoff (Podosphaera sect. Sphaerotheca) (1,2). Pathogenicity was confirmed by gently pressing diseased leaves onto leaves of healthy E. pectinatus plants. Plants were incubated in a humidity chamber at 22 to 24°C and after 12 to 14 days powdery mildew colonies developed. E. pectinatus cv. Viridis, a cultivar that lacks the extensive pubescence of E. pectinatus, also developed disease when inoculated. This appears to be the first report of powdery mildew on E. pectinatus in North America. A voucher specimen has been deposited into the University of California Herbarium (accession # UC1738635). P. fusca was also observed on cv. Viridis in a nursery in New York in 1999. It is unclear where this pathogen originated. P. fusca parasitizes a large number of asteraceous species including dandelion (Taraxacum officinalis) and sowthistle (Sonchus spp.) weeds, which occur in the area and sometimes are infected with powdery mildew. The Euryops powdery mildew pathogen may be a race that is different than those found on other composites in the United States. The fungus was observed on plants in shaded areas but not on plants in full sun. References: (1) U. Braun. Nova Hedwigia 89:1, 1987. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) H. D. Shin and Y. J. La. Mycotaxon 46:445, 1993.


Plant Disease ◽  
1998 ◽  
Vol 82 (1) ◽  
pp. 127-127 ◽  
Author(s):  
G. S. Saenz ◽  
S. T. Koike

Powdery mildew was observed on English ivy (Hedera helix L.) in Berkeley, CA, in the spring of 1997. Fungal growth was ectophytic and amphigenous on leaves and petioles and caused slight reddening and buckling of leaves. The mycelium was white, effuse to dense, and had hyphal diameters of 3.5 to 6.9 μm. Appressoria were nipple-shaped to lobed, and sometimes were opposite. The foot cells of the conidiophores were cylindric, sometimes slightly flexuous, and were 18.5 to 30.0 × 6.9 to 9.2 μm in diameter. The foot cells were followed by 1 or 2 cells. When only one cell followed the foot cell, this cell was longer and slightly wider than the foot cell and measured 20.8 to 46.2 × 6.9 to 9.2 μm. When two cells followed the foot cell, these cells were of similar length to the foot cell, with the second cell usually shorter. Conidia were formed singly, were cylindric to slightly doliiform, and measured 32.0 to 44.0 × 11.5 to 19.0 μm. Fibrosin bodies were not observed. Conidia germinated at the ends and germ tubes terminated in lobed appressoria, placing this fungus in the Polygoni-type germination category (2). Cleistothecia were not observed. Based on these characters, the fungus was identified as Oidium araliacearum U. Braun & E. Oehrens B. A specimen was deposited with the University of California at Berkeley herbarium (accession number UC1713247). Pathogenicity was confirmed by gently pressing infected leaves onto leaves of various stages of maturity on ivy vines (3 to 4 vines per plant; 4 plants). Inoculated plants were kept in a moist chamber for 48 h, and then maintained in a greenhouse. Powdery mildew developed on inoculated plants, primarily on leaves of intermediate maturity, after 14 days, while uninoculated plants did not develop disease. Phyllactinia guttata is the only other powdery mildew recorded on English ivy (2). O. araliacearum differs from P. guttata in conidial shape (cylindric vs clavate), germination habit (end vs side of conidia), and asexual genus (Oidium vs Ovulariopsis) (2). Previous to this report, O. araliacearum was described only on Pseudopanax valdiviensis, another Araliaceae plant, in Chile (1). This is the first report of a powdery mildew disease of ivy in California, and the first report of Hedera helix as a host of O. araliacearum. References: (1) U. Braun. Mycotaxon 25:259, 1986. (2) U. Braun. Nova Hedwigia 89:1, 1987.


Plant Disease ◽  
2000 ◽  
Vol 84 (6) ◽  
pp. 705-705 ◽  
Author(s):  
G. S. Saenz ◽  
S. T. Koike ◽  
H. J. Scheck

Nandina domestica Thunb. (heavenly bamboo) is an ornamental plant that is widely planted in landscapes in California and other states. Since 1996, powdery mildew disease has been seen on outdoor landscape N. domestica in various regions of California (Alameda, Monterey, Riverside, and Santa Barbara counties). Symptoms consist of reddening of leaf and stem tissues colonized by the fungus and curling and twisting of infected leaves. The following observations were the same for all collected isolates. White ectophytic mycelium was observed on leaves and petioles. Mycelium on leaves was amphigenous, mostly epiphyllous, and effused or in patches. Hyphal appressoria were nipple-shaped to lobed and sometimes opposite in orientation. Conidiophores were cylindrical, straight, sometimes slightly flexuous, 22 to 32 × 6 to 8 μm in dimension, and followed by one to two shorter cells. Conidia were cylindrical, produced singly, and 27 to 42 × 11.5 to 14 μm in dimension. Fibrosin bodies were not observed. Conidial germ tubes were approximately twice the length of the spore, originated from the ends of the spore, and terminated in simple appressoria. Cleistothecia were not present. Based on these characteristics, the fungus was identified as Microsphaera berberidis (DC) Lév. (1). Pathogenicity was confirmed by gently pressing diseased leaves on leaves of healthy N. domestica plants. Plants were incubated in a humidity chamber at 22 to 24°C, and after 10 to 14 days, powdery mildew colonies developed. A voucher specimen was deposited in the University of California Herbarium (UC 1738622). Additional inoculation experiments showed that four other N. domestica cultivars were susceptible (Compacta Nana, Gulf Stream, Harbour Dwarf, and Royal Princess). Helfer (2) noted several possible candidates for the Nandina powdery mildew pathogen in the United Kingdom. However, due to the conidial characteristics of that fungus and the paucity of character descriptions for the several species mentioned, no species name was given to the Edinburgh isolate. In contrast, the mitosporic characteristics of our isolates fit the description for M. berberidis. This is the first report of powdery mildew on N. domestica in North America. References: (1) U. Braun. Nova Hedwigia 89:1, 1987. (2) S. Helfer. Plant Dis. 79:424, 1995.


Plant Disease ◽  
2018 ◽  
Vol 102 (1) ◽  
pp. 251
Author(s):  
A. R. Solano-Báez ◽  
E. Santiago-Santiago ◽  
S. G. Leyva-Mir ◽  
J. M. Tovar-Pedraza ◽  
M. Camacho-Tapia ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Alma Rosa Solano-Báez ◽  
Santos Gerardo Leyva-Mir ◽  
Moises Camacho-Tapia ◽  
Alfonso Arellano Victoria ◽  
Geremias Rodríguez-Bautista ◽  
...  

Wild blackberry species (Rubus spp. L.; Rosaceae) represents an invaluable source of genes for the generation of new varieties, but also serve as a primary source of disease inoculum. During April of 2020, symptoms of powdery mildew were observed on four populations of wild blackberry species located in the states of Chiapas (16°59'11"N, 92°59'07"W; 16°47'08"N, 92°31'05"W) and Michoacán (19°37'17"N, 100°08'59"W; 19°29'25"N, 101°32'54"W), Mexico. Signs of the pathogen were white powdery masses mainly on the top of new shoots. Symptoms included yellowing, necrosis, and early defoliation of the plants. Hyphae were tin-walled, hyaline, smooth, and 4.0–9.0 mm wide. Appressoria were indistinct -to- nipple-shaped. Conidiophores (n=30, 75–225 × 10.5–13.5 μm) were straight, and unbranched with cylindrical foot cells (n=30, 31.5–158 × 8–13.5 μm), straight, somewhat widening upwards, followed by 1–3 shorter cells. Conidia (n=100; 25.5–38.5 × 9.5–22.5 μm) were catenulate, ellipsoid-ovoid -to- doliiform, containing fibrosin bodies (in 3% KOH). Germ tubes (n=30, 13.5–40.5 × 4.5 μm) emerged laterally, and were unbranched with slightly swollen tips. Chasmothecia were not found. Morphological characters of the fungus in all samples corresponded to the previous descriptions of Podosphaera aphanis by Braun and Cook (2012) and Stevanovi´c et al. (2020). Voucher specimens were deposited in the Department of Agricultural Parasitology Herbarium at the Chapingo Autonomous University under accessions UACH421, UACH423, UACH425, UACH426. To confirm the species identification, the internal transcribed spacer (ITS) of one sample was amplified using the primers ITS5 (White et al. 1990) and P3 (Kusaba and Tsuge, 1995) and sequenced. The sequence was deposited in GenBank (accession number MW988591). A phylogenetic analysis using Bayesian inference and maximum likelihood was performed (Hernández-Restrepo et al. 2018) and included other Podosphaera species (Takamatsu et al. 2010). The sequence from the isolate UACH426 clustered with the strain MUMH1871 of P. aphanis forming a definite clade and remained as a sister taxon of P. pannosa. Pathogenicity was verified through inoculation by gently dusting conidia from one powdery mildew patch onto leaves of five healthy blackberry plants of each specie. The same number of noninoculated plants served as controls. All plants were maintained in a greenhouse at 25–30°C with 75% relative humidity. All inoculated plants developed powdery mildew symptoms after 12 days, whereas no symptoms were observed on noninoculated plants. The fungus recovered from the inoculated plants was morphologically identical to that originally observed on diseased blackberry plants, demonstrating the pathogenicity of the fungus. Based on morphological data and phylogenetic analysis, the fungus was identified as P. aphanis. This fungus has been reported to cause powdery mildew on blackberry plants in Serbia (Stevanovi´c et al. 2020). This is the first report of P. aphanis causing powdery mildew on wild backberry species in Mexico according to Farr and Rossman (2021). The primary source of inoculum of powdery mildew for commercial plantings is wild blackberry plants from noncultivated areas and may warrant control of wild populations.


Plant Disease ◽  
2010 ◽  
Vol 94 (2) ◽  
pp. 276-276 ◽  
Author(s):  
D. B. Marcum ◽  
K. Perez ◽  
R. M. Davis

In August of 2009, powdery mildew was observed on peppermint (Mentha piperita L.) in several commercial fields in the Fall River Valley of eastern Shasta County, California. Plant growth was apparently reduced by the disease, but its impact on yield was unknown. White fungal growth was restricted to the adaxial surfaces, where colonies were thin and effused. Heavily infected leaves developed a reddish tint as growth prematurely ceased. Doliform conidia ([26.6-] 29.2 [-31.7] × [13.2-] 15.6 [-16.8] μm) were produced in chains of approximately six conidia. Foot cells were cylindrical ([41.3-] 55.2 [-75.0] × [11.2-] 12.0 [-12.8] μm). Immature chasmothecia were yellowish brown and approximately 100.0 μm in diameter with flexuous, mycelium-like appendages up to 200 μm long. All these features were consistent with those of Golovinomyces biocellatus. Asci were not observed. To confirm the identity of the fungus, nuclear rDNA internal transcribed spacer (ITS) regions were amplified by PCR with universal primers ITS4 and ITS5. The sequence (537 bp) was an exact match for several submissions of G. biocellatus in GenBank (e.g., Accession No. EU035602, a sequence of the fungus from mint in Australia [1]). Pathogenicity was confirmed by brushing spores from naturally infected leaves onto three rooted cuttings of M. piperita ‘Black Mitchum’. After the plants were covered with a plastic bag for 36 h to maintain high humidity, they were kept on a greenhouse bench at 23 to 28°C. Three noninoculated plants, which served as controls, were placed in another greenhouse in similar conditions. The experiment was repeated once. All inoculated plants developed signs of powdery mildew within 7 days of inoculation whereas noninoculated plants remained disease free. The fungus on inoculated leaves was morphologically indistinguishable from the one used to inoculate the plants. To our knowledge, this is the first report of G. biocellatus on peppermint in California. References: (1) J. R. Liberato and J. H. Cunnington. Australas, Plant Dis. Notes 2:38, 2007.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 461-461 ◽  
Author(s):  
R. Raid ◽  
C. Miller ◽  
K. Pernezny

Parsley (Petroselinum crispum (Mill.) Nym. ex A.W. Hill) is an important leaf crop in the Everglades Agricultural Area of southern Florida. During the spring of 2005 and 2006, disease signs and symptoms resembling those incited by powdery mildew were observed on parsley at a commercial vegetable farm located 15 km east of Belle Glade. Symptoms consisted of leaf chlorosis, particularly in the dense lower canopy, and desiccation of affected tissue. A dense, white-to-light gray fungal growth was visible macroscopically on the surface of affected leaf tissue. Microscopic examinations revealed ectophytic hyphae with lobed appressoria and hyaline, straight conidiophores bearing single conidia. Conidia were short-cylindrical to cylindrical, measured 33 to 44 μm long and 13 to 16 μm wide, and lacked fibrosin bodies. Conidiophore foot cells were also cylindrical, straight, and measured 27 to 37 × 9 to 10 μm. Ascocarps of the teleomorph were not observed. The fungus closely matched the description of Erysiphe heraclei DC, a pathogen previously reported as attacking parsley on the U.S. West Coast (1,2). Pathogenicity was verified by inoculating adaxial leaf surfaces of 12 plants (cv. Dark Green Italian) with conidia collected from infected tissue by using a small brush. Inoculated plants and 12 noninoculated plants were lightly misted, held in a moist chamber for 48 h (22°C), and then incubated in a growth chamber for 4 weeks at 22°C with a photoperiod of 16 h. Symptoms that developed on inoculated plants were similar to those observed in the field, with no symptoms evident on the controls treated in a similar manner. To our knowledge, this is the first report of powdery mildew on parsley in Florida, even though parsley has been grown in the area for at least six decades. Noted as being somewhat unique among fungal pathogens because it favors dry rather than moist climatic conditions, it is probably no coincidence that powdery mildew was observed both years during the month of April, the height of Florida's dry season. The fact that monthly rainfall totals of 22 and 35 mm were recorded during April of 2004 and 2005, respectfully, well below the historical average of 72 mm, may have been a contributing influence. Glawe et al. (1), in issuing a first report of E. heraclei on carrots and parsley in the state of Washington and observing ascocarps on carrot tissue, mentioned the prospect of contaminated seed serving as a potential source of dissemination. Although they did not observe the teleomorph on parsley, prospects for its occurrence seem likely. With the bulk of parsley seed planted in Florida being produced in Washington, Oregon, or California, the observations reported herein may provide credence to such a hypothesis. References: (1) D. A. Glawe et al. Online publication. doi:10.1094/PHP-2005-0114-01-HN. Plant Health Progress, 2005. (2) S. T. Koike and G. S. Saenz. Plant Dis. 78:1219, 1994.


Plant Disease ◽  
2007 ◽  
Vol 91 (4) ◽  
pp. 470-470 ◽  
Author(s):  
C. A. Bradley ◽  
P. Burlakoti ◽  
R. S. Nelson ◽  
M. F. R. Khan

Powdery mildew caused by Erysiphe polygoni was widespread on sugar beet (Beta vulgaris) in North Dakota during 2006. This disease is generally not prevalent in the state because of the application of fungicides, which also have efficacy against powdery mildew, for control of Cercospora leaf spot caused by Cercospora beticola. Because Cercospora leaf spot pressure was low in 2006, fewer fungicide applications were made in the state, thus allowing for more observations of powdery mildew. Leaf samples from four fields near Amenia, Minto, Prosper, and St. Thomas, ND were collected in mid-September to look for the perfect stage of E. polygoni, since this has recently been observed in Idaho, Colorado, Montana, and Nebraska (1–3). Only the leaves collected from the field near Amenia had visible immature (yellow and brown) globose ascomata; ascomata were not observed on the leaves collected in the other fields. Additional leaves were collected from the field near Amenia in early October; these leaves had immature and mature (black) globose ascomata that were 70 to 105 μm in diameter. Mature ascomata contained ovoid to elliptic asci with one to four hyaline-to-golden pigmented ascospores (20 to 25 × 12 to 20 μm). The color, shape, and size of ascomata, asci, and ascospores were similar to previously reported observations (1–4). The prevalence of the perfect stage in North Dakota is unknown, since no statewide surveys were conducted. To our knowledge, this is the first report of the perfect stage of E. polygoni on sugar beet in North Dakota. The occurrence of the perfect stage could lead to a means for overwintering in this area. Because of the means for genetic recombination, the risk of fungicide resistance and the development of races may increase. References: (1) J. J. Gallian and L. E. Hanson. Plant Dis. 87:200, 2003. (2) R. M. Harveson. Plant Dis. 88:1049, 2004. (3) B. Jacobsen et al. Plant Dis. 89:1362, 2005. (4) E. G. Ruppel. Powdery mildew. Pages 13–15 in: Compendium of Beet Diseases and Insects. E. D. Whitney and J. E. Duffus, eds. The American Phytopathological Society. St. Paul, MN, 1986.


Plant Disease ◽  
2004 ◽  
Vol 88 (10) ◽  
pp. 1163-1163 ◽  
Author(s):  
S. Gaetán ◽  
M. Madia

Canola (Brassica napus) is a developing oleaginous crop grown commercially in the Buenos Aires and Santa Fe provinces of Argentina. During the autumn of 2003, typical signs of powdery mildew were observed on canola plants in experimental field plots in Buenos Aires. Average disease incidence was 42% on 3- to 6-month-old canola cultivars developed in the following countries: Argentina (Eclipse, Impulse Master, Mistral, and Nolza); Australia (Oscar and Rainbow); Canada (Sentry); France (Cadillac, Camberra, and Capitol); and Sweden (Maskot, Sponsor, and Wildcat). The range of incidence on these cultivars was 35 to 93%. Other cultivars exhibited an apparent high level of resistance or escaped disease. These included: Charlton (Argentina); 46CO3, Dunkeld, Insignia, Mystic, Monty, Outback, Rivette, and Surpass 400 (Australia), and Caviar (France). Climatic conditions in Buenos Aires, especially rainfall, from March to May 2003 were apparently favorable for powdery mildew development. On susceptible cultivars, fungal growth was observed on leaves, stems, and pods that resulted in premature senescence of the tissues. The mycelium, with multilobed hausthoria, was white to gray, dense or fine, and in patches or covering the entire adaxial leaf surfaces. Appressoria were lobed and conidiophores were straight. Foot cells were cylindrical, straight, measured 35 to 42 × 7 to 10 μm, and were followed by two cells. Conidia were produced singly, cylindrical to ovoid, and measured 36 to 40 × 18 to 20 μm. The conidial length-to-width ratio was 2.0. No fibrosin bodies were observed in the conidia and conidia germinated at the ends. Cleistothecia were not observed. On the basis of mycelial, conidial, and hausthoria characteristics observed on six leaves for each affected cultivar, the fungus was identified as Erysiphe polygoni DC (1). Pathogenicity was confirmed on 5-week-old canola plants of cvs. Eclipse, Impulse, Master, Mistral, and Maskot by gently pressing (1 min) one adaxial infected leaf with abundant sporulation onto one adaxial healthy leaf. The experiment, which included five inoculated plants and three noninoculated control plants for each cultivar, was conducted in a greenhouse at 22 to 24°C and maintained at 75% relative humidity with no supplemental light. Inoculated and control plants were covered with polyethylene bags for 48 h after inoculation. Powdery mildew developed on all inoculated plants of all cultivars after 12 to14 days. The control plants did not develop disease. The experiment was repeated with similar results. E. polygoni has a worldwide distribution (2); however, the results suggest that this fungus may be a threat to the main cultivars being grown in Argentina (Eclipse, Impulse, Master, Mistral, and Nolza), since high levels of disease incidence, as much as 70%, were observed. Under propitious environments, this pathogen could cause severe yield losses in commercially grown canola in Argentina. To our knowledge, this is the first report of canola powdery mildew caused by E. polygoni in Argentina. References: (1) H. J. Boesewinkel. Rev. Mycol. Tome 41:493, 1977. (2) D. F. Farr et al. Fungi on Plants and Plant Products in the United States. The American Phytopathological Society, St.Paul, MN, 1989.


Sign in / Sign up

Export Citation Format

Share Document