scholarly journals Evidence that Cercospora carotae Causes Leaf Spot on Carrot in Western Washington

Plant Disease ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 559-559
Author(s):  
D. A. Inglis ◽  
M. L. Derie ◽  
K. C. Volker

During 1999, a leaf spot on carrot (Daucus carota L. subsp. sativus [Hoffm.] Arcang.) was observed on nearly every plant in a 20-ha field of carrots (cv. Red Chantenay) grown for processing in western Washington. Circular to elongate, light brown lesions surrounded by chlorosis were present on leaflet margins and petioles of affected plants. Conidia of Cercospora carotae (Pass.) Solheim were present in the lesions. Small pieces of surface-sterilized leaf tissue were placed onto potato dextrose agar plates and incubated at room temperature to obtain fungal isolates. Koch's postulates were completed by atomizing the upper and lower leaves of carrot seedlings at the three to four leaf stage with sterile water or C. carotae at 1.0 × 104 conidia/ml in sterile 0.01% Tween 80. Treatments were replicated five times using single plants. The plants were bagged in clear plastic and placed in a greenhouse at 25°C for 72 h. Disease symptoms developed within 10 days as light brown lesions on leaflet margins and petioles, and were similar to those found in the field. The fungus was reisolated as described above. Symptoms did not develop in control plants sprayed with water. Farr et al. (1) report that C. carotae occurs in several states but not Washington, and Shaw (2) lists C. carotae only from British Columbia and Oregon. To our knowledge, this is the first report of Cercospora leaf spot on carrot in Washington. References: (1) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society, St. Paul, MN. (2) C. G. Shaw. W.S.U. Agric. Exp. Sta. Bull. 765, 1969.

Plant Disease ◽  
2001 ◽  
Vol 85 (5) ◽  
pp. 559-559
Author(s):  
D. Inglis ◽  
M. Derie ◽  
T. Hsiang

Stem cankers were observed during 1998 on bolting stalks of cabbage (Brassica oleracea var. capitata L.) in seed production fields in western Washington. In 1999, approximately 4 ha of cabbage hybrid 'Wk 121, was severely affected. Lesions occurred at the base of seed stalks after they emerged from heads of plants overwintered in the field, or on flower branches and seed-bearing stalks that developed during the growing season. Lesions girdled a branch or stalk, and killed or weakened it so that it broke during pod fill. Isolates of Botrytis cinerea Pers.:Fr. were obtained by plating spores from lesions onto potato dextrose agar. To confirm pathogenicity, stems of 12-day-old seedlings of ‘Wk 121’ were scraped with a razor blade or left intact, atomized with sterile 0.01 % Tween 80 or a suspension of Botrytis cinerea at 1.0 × 106 conidia/ml, and kept at 20°C in a dew chamber in plastic bags. The fungus was reisolated from small lesions on wounded stems inoculated with B. cinerea after 3 days. No lesions developed on non-wounded or wounded control plants. B. cinerea is reported to cause storage rot of cabbage (2) and gray mold on Brassica oleracea L. (cabbage, kale, kohlrabi, wild cabbage) in Washington (1) but not stem canker. This new seed crop disease may be the result of predisposition to infection by freezing injury or mechanical damage on a highly susceptible cultivar grown under cool, wet weather. References: (1) D. F. Farr et al. 1989. Fungi on Plants and Plant Products in the United States. American Phytopathological Society. St. Paul, MN. (2) O. C. Yoder and M. L. Whalen. Can. J. Bot. 53:691, 1975.


Plant Disease ◽  
2012 ◽  
Vol 96 (4) ◽  
pp. 581-581 ◽  
Author(s):  
C. L. Oliver ◽  
R. Cai ◽  
B. A. Vinatzer ◽  
E. A. Bush ◽  
M. A. Hansen

In early May 2008 and 2009, peony samples (Paeonia spp.) with symptoms of leaf spot and blight were submitted to the Virginia Tech Plant Disease Clinic. The 2008 peony was an unknown cultivar from a northern Virginia landscape. The three cultivars (Dr. Alexander Fleming, Felix Crousse, and Karl Rosenfield) submitted in 2009 were from a commercial nursery in southwestern Virginia that was reporting leaf spot progressing to severe blight, which rendered plants unsalable, on 75% of a 1,219 m2 block during a 10-day period of heavy rainfall. Bacterial streaming from spots was observed. On the basis of phenotypic and biochemical tests, the isolates were determined to be xanthomonads. Two isolates (one recovered from the 2008 sample and one from the 2009 sample) were used in the following work. Isolates were characterized by multilocus sequencing (MLST) (4). PCR reactions were prepared and cycled using 2X ImmoMix (Bioline, Tauton, MA) according to manufacturer's recommendations with an annealing temperature of 58°C. Template DNA was added by touching a single colony with a 20-μl pipette tip and placing the tip into the reaction mix for 1 min. Four bands of the expected size were visualized on an electrophoresis gel and cleaned products were sequenced in forward and reverse directions at the University of Chicago, Cancer Research Center DNA Sequencing Facility. Corresponding gene fragments of each isolate were identical. A consensus sequence (PAMDB Isolate ID No. 936) for each of the four gene fragments was constructed and compared with sequences in NCBI ( http://www.ncbi.nlm.nih.gov/nuccore/ ) and PAMDB ( http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl ) (1) databases using Blastn (2). No perfect match was found. Genetic distances between the peony isolates and all strains in PAMDB were determined by MegAlign (Lasergene; DNAStar, Madison, WI). The Xanthomonas strain most similar to the isolates recovered from the peony samples was Xanthomonas hortorum pv. hederae ICMP 1661 with a genetic distance of 0.023; this strongly suggests that the peony isolates belong to X. hortorum. For Koch's postulates, six surface-disinfested young leaflets from Paeonia lactiflora ‘Karl Rosenfield’ were inoculated by forcefully spraying a phosphate-buffered saline suspension of each bacterial isolate (~4.3 × 109 CFU/ml) into the underside of the leaf until leaf tissue appeared water soaked. Controls were inoculated similarly with phosphate-buffered saline solution. Moist chambers with inoculated leaves were incubated at ambient temperature under two 48W fluorescent grow lights with 12 h of light and dark. Circular spots were observed on leaves inoculated with the 2009 and 2008 isolates in 18 and 20 days, respectively. No symptoms were observed on controls. Bacterial streaming from leaf spots was observed by phase-contrast microscopy; bacteria were isolated and confirmed to be identical to the original isolates by the methods described above. To our knowledge, this is the first report of a Xanthomonas sp. causing leaf spot and blight on peony. Although bacterial blight of peony has been attributed to a xanthomonad in recent years, the pathogen had not been further characterized (3). References: (1) N. F. Almeida et al. Phytopathology 100:208, 2010. (2) D. J. Altschul et al. J. Mol. Biol. 215:403, 1990. (3) M. L. Gleason et al. Diseases of Herbaceous Perennials. The American Phytopathological Society, St. Paul, MN. 2009. (4) J. M. Young et al. Syst. Appl. Microbiol. 31:366, 2008.


Plant Disease ◽  
2005 ◽  
Vol 89 (8) ◽  
pp. 797-801 ◽  
Author(s):  
R. T. Lartey ◽  
T. C. Caesar-TonThat ◽  
A. J Caesar ◽  
W. L. Shelver ◽  
N. I. Sol ◽  
...  

Safflower is an oilseed crop adapted to the small-grain production areas of the western Great Plains, including the Northern Plains Area (NPA). In the NPA, safflower production is being evaluated for potential rotation with sugar beet. Safflower is susceptible to Cercospora carthami, whereas sugar beet is susceptible to C. beticola C. carthami has not been observed on safflower in the NPA but C. beticola is ubiquitous on sugar beet. Observation of unusual leaf spots on irrigated safflower cv. Centennial at Sidney, MT prompted this investigation of safflower as a potential alternate host of C. beticola. Safflower plants were inoculated with four isolates of C. beticola (C1, C2, Sid1, and Sid2) and incubated in growth chambers; leaf spot symptoms appeared between 3 and 4 weeks later. Polymerase chain reaction (PCR) amplification of extracts from lesion leaf tissue with C. beticola-specific primers produced fragments comparable with amplified fragments from purified cultures of control C. beticola. PCR assay of cultures of single spores from diseased safflower leaf lesions also produced fragments comparable with fragments from C. beticola cultures. Antibody that was raised from isolate C2 also bound to antigens from the single-spore cultures of the four C. beticola isolates. Inoculum from single-spore cultures from infected safflower also infected sugar beet and produced typical Cercospora leaf spot symptoms. Assay of these leaf lesions by PCR resulted in amplification of target fragments with the C. beticola-specific primers. Our results demonstrate that safflower is a new host of C. beticola.


Plant Disease ◽  
2001 ◽  
Vol 85 (8) ◽  
pp. 920-920 ◽  
Author(s):  
L. J. du Toit ◽  
M. L. Derie

In September 2000, symptoms typical of leaf spot caused by Cladosporium variabile were observed on a spinach (Spinacea oleracea L.) seed crop in western Washington. Dry, bleached spots (1 to 20 mm) were most abundant on lower leaves. Two isolates of C. variabile and three isolates of Stemphylium were recovered by plating surface-sterilized (0.1% sodium hypochlorite) sections of symptomatic leaf tissue onto water agar and acidified potato dextrose agar (PDA). Transfers of each isolate were made to PDA, and cultures were kept at 24 ± 2°C on a lab bench (natural day/night cycle) for 10 to 14 days. Spore suspensions (105/ml) of the isolates of C. variabile were prepared in a 0.01% solution of Tween 80. Isolates of Stemphylium produced few spores, so mycelial suspensions (105 fragments/ml) were prepared. Five 8-week-old seedlings of each of the cultivars Winter Bloomsdale and Ozarka II were inoculated per fungal isolate by atomizing the inoculum onto each seedling until all leaves were covered with a thin film of droplets (4 to 5 ml of inoculum per seedling). Plants were enclosed in plastic bags on a greenhouse bench (24 ± 3°C) for 72 h (8 h/16 h day/night). Symptoms developed within 80 h of inoculation for both isolates of C. variabile and two isolates of Stemphylium. Small (1 to 2 mm) sunken spots turned white 24 to 48 h later and became dry and bleached. Lesions caused by isolates of Stemphylium enlarged and coalesced more rapidly than lesions caused by C. variabile, and were more irregular and usually not delimited by the thin brown margin typical of lesions caused by C. variabile. The differences in symptoms were consistent on both spinach cultivars. Symptoms were not observed on non-inoculated control plants nor on plants inoculated with the third isolate of Stemphylium. C. variabile and Stemphylium were reisolated from symptomatic leaf tissue. Colony morphology, conidiophores, and conidia of the pathogenic Stemphylium isolates were similar to those of pathogenic isolates of Stemphylium botryosum obtained from spinach plants in California (2). This is the first report of S. botryosum as a foliar pathogen of spinach seed crops in Washington. Although Correll et al. (1) noted Stemphylium to be damaging on mature spinach plants grown for seed production, S. botryosum may not have been diagnosed previously on spinach seed crops in Washington because of the similarity of symptoms caused by S. botryosum and C. variabile. S. botryosum was recently reported as a foliar pathogen of spinach in California (2). References: (1) J. C. Correll et al. Plant Dis. 78:653, 1994. (2) S. T. Koike et al. Plant Dis. 85:126, 2001.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1655-1655 ◽  
Author(s):  
A. L. Vu ◽  
K. D. Gwinn ◽  
B. H. Ownley

There are few reports on diseases of switchgrass. In November 2009, light brown to white bleached spots (1 to 2 × 3 to 4 μm) were observed on ‘Alamo’ switchgrass (Panicum virgatum L.) grown in a growth chamber in Knoxville, TN, from surface-disinfested seed produced in Colorado. Symptomatic leaf tissue was surface sterilized, air dried, and plated on 2% water agar (WA) amended with 6.9 mg fenpropathrin/liter (Danitol 2.4 EC, Valent Chemical, Walnut Creek, CA) and 10 mg/liter rifampicin (Sigma-Aldrich, St. Louis, MO). Plates were incubated at 26°C in the dark for 5 days. A sporulating, dematiaceous, mitosporic fungus was observed and transferred to potato dextrose agar. Colonies were white to gray, with brown as conidia increased. Conidia ranged in size from 10 to 22.5 × 20 to 37.5 (average 15.2 × 26.5) μm. Conidia were golden to dark brown, broadly ellipsoidal, some pyriform, with one longitudinal septum and two to three transverse septa, sometimes constricted at the transverse septa. Based on microscopic examination, the fungus was identified as Pithomyces chartarum (Berk. & Curt.) M.B. Ellis (1); observations were consistent with the authority (2). Pathogenicity assays were conducted with 5-week-old ‘Alamo’ switchgrass grown from seed scarified with 60% sulfuric acid and surface-sterilized with 50% bleach. Seed were sown in 9 × 9-cm pots containing 50% (v/v) ProMix Potting and Seeding Mix (Premier Tech Horticulture, Québec, Canada) and 50% Turface ProLeague (Profile Products, Buffalo Grove, IL). Eight replicate pots with ~20 plants each were sprayed with a spore suspension of 5.7 × 105 spores/ml sterile water prepared from 6-day-old cultures grown on V8 juice agar in the dark. Two more pots were sprayed with sterile water to serve as controls. All plants were subjected to high humidity for 72 h by enclosure in a plastic bag. Plants were placed in a growth chamber at 25/20°C with a 12-h photoperiod. Leaf spot symptoms similar to the original disease were evident on plants in each of the eight replicate pots 6 to 10 days post-inoculation. Control plants had no symptoms. Lesions were excised from leaves, surface sterilized, and plated on WA. The resulting cultures were again identified as P. chartarum based on morphology. The internal transcribed spacer (ITS) region of rDNA from the original isolate and the pathogen recovered from plants in the pathogenicity tests were amplified with PCR using primers ITS4 and ITS5. PCR amplicons were obtained from both isolates, sequenced, and found to have 100% identity. A 580-bp sequence was deposited at GenBank (Accession No. JQ406588). The nucleotide sequence had 98 to 100% identity to the ITS sequences of isolates of Leptosphaerulina chartarum (anamorph: P. chartarum), including isolate Mxg-KY09-s4 (GU195649) from leaf spot on Miscanthus × giganteus in Kentucky (1), and isolates from leaf lesions on wheat (EF489400 and JX442978). To our knowledge, leaf spot caused by P. chartarum has not been described on switchgrass (3). Pithomyces chartarum is a seedborne pathogen of switchgrass, and may play a role in stand establishment. References: (1) M. O. Ahonsi et al. Plant Dis. 94:480, 2010. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England. 1971. (3) D. F. Farr and A. Y. Rossman. Fungal Databases. Systematic Mycology and Microbiology Laboratory, ARS, USDA, Retrieved from http://nt.ars-grin.gov/fungaldatabases/ , 18 January 2013.


Plant Disease ◽  
2009 ◽  
Vol 93 (4) ◽  
pp. 425-425 ◽  
Author(s):  
M. Zhang ◽  
T. Tsukiboshi ◽  
I. Okabe

European columbine, Aquilegia vulgaris L., Ranunculaceae, is an herbaceous flower widely used in gardens, parterres, and courtyards and is a traditional herbal plant. During the summer of 2008, leaf spots were observed on a plant cultivated along a roadside area in Nasushiobara, Tochigi, Japan. In some courtyards, the leaf spot affected more than 60% of the plants. Early symptoms appeared as small, round or elliptic, brown lesions on the leaves. Lesions expanded to 5 to 15 × 4 to 10 mm, irregular spots that were dark brown to black in the middle, with pale yellow-brown or purple-brown margins. In continuously wet or humid conditions, thick, gray mycelium and conidia appeared on the surface of leaf spots. Conidiophores were melanized at the base and hyaline near the apex, branched, and septated (approximately 3 mm × 16 to 18 μm). Conidia were hyaline, aseptate, ellipsoidal to obovoid, with a slightly protuberant hilum, and ranged from 9 to 14.5 × 5.5 to 6.5 μm. The pathogen was identified as Botrytis cinerea Pers.:Fr on the basis of morphology and sequence of ITS1-5.8s-ITS2 region of rDNA. The sequence (GenBank Accession No. FJ424510) exactly matched the sequences of two Botryotinia fuckeliana (anamorph Botrytis cinerea), (e.g., GenBank Accession Nos. AY686865 and FJ169666) (2). The fungus was isolated on potato dextrose agar (PDA) from a single conidium found on the symptomatic leaf tissue. Colonies of B. cinerea were first hyaline and later turned gray to black when the spores differentiated. Koch's postulates were performed with three whole plants of potted aquilegia. Leaves were inoculated with mycelia plugs harvested from the periphery of a 7-day-old colony; an equal number of plants were inoculated with the plugs of PDA medium only and served as controls. All plants were covered with plastic bags for 24 h to maintain high relative humidity and incubated at 25°C. After 8 days, all mycelium-inoculated plants showed symptoms identical to those observed on leaves from A. vulgaris infected in the field, whereas controls remained symptom free. Reisolation of the fungus from lesions on inoculated leaves confirmed that the causal agent was B. cinerea. B. cinerea has been previously reported on A. vulgaris in the United States and China (1,3). To our knowledge, this is the first report of leaf spots caused by B. cinerea on A. vulgaris in Japan. References: (1) Anonymous. Index of Plant Diseases in the United States. USDA Agric. Handb. No 165, 1960. (2) M. B. Ellis. Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 1971. (3) Z. Y. Zhang. Flora Fungorum Sinicorum. Vol. 26. Botrytis, Ramularia. Science Press, Beijing, 2006.


Plant Disease ◽  
2021 ◽  
Author(s):  
Min Shi ◽  
Yan Zhong Li

Hairy vetch Vicia villosa Roth is widely grown in southwestern China for green manure and forage. In December 2019, a leaf disease occurred on 80% plants of V. villosa var. glabrescens in an eight-hectare field in Qujing(N 25°28′12″, E 103°36′22″), Yunnan Province, China. The disease leaves had irregular, brown to dark brown leaf spots with white mold. Twenty diseased leaves from five plants were randomly collected from the field. The leaf samples were sterilized with 75% ethanol for 30 s and 1% NaClO for 75 s, rinsed three times with sterile distilled water, surface water removed with sterile filter paper, and placed onto potato dextrose agar (PDA) for culture at 20oC. The obtained fungal isolates were purified by transferring 1 to 2 mm hyphal tips onto fresh PDA plates and cultured under the same temperature condition. The isolates grew slowly, at a rate of 0.7 mm/d at 20℃ for 4 weeks. A diseased plant specimen (accession MHLZU19326) and three isolates (accessions YN1931401, YN1931402, and YN1931403) were deposited in the Mycological Herbarium of Lanzhou University (MHLZU). Conidia from the PDA cultures were hyaline, spherical, smooth, aseptate, and measured 2.13 to 3.67 × 4.56 to 5.77 μm (n = 50). Conidiophores were hyaline, smooth, and straight. DNA of purified isolates was extracted and the nuclear ribosomal internal transcribed spacer (ITS), tef1-α, his3 and gapdh genes were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), EF1-728F/EF2 (Carbone and Kohn 1999;O’Donnell et al. 1998), CylH3F/CylH3R (Crous et al. 2004), and gpd1/gpd2 (Berbee et al. 1999), respectively. DNA sequences of isolates YN1931401, YN1931402, and YN1931403 were deposited in GenBank for the ITS (accessions MW092181, MW332205, and MW332206), tef1-α (MW448172 to MW448174), his3 (MW448175 to MW448177), and gapdh (MW448178 to MW448180). These sequences had the highest similarities with sequences of Ramularia sphaeroidea Sacc. in GenBank, 99%(514∕516, 515∕517, and 514∕517 bp) for ITS, 99% (402∕403, 403∕405, and 405∕405bp) for tef1-α, 99% (377∕378, 378∕378, and 376∕378bp) for his3, and 100% (558∕557, 557∕559 and 561∕565 bp) for gapdh . A phylogenetic tree generated with the sequences clustered the fungus closely with R. sphaeroidea. Infection experiments were carried out with 50 plants of V. villosa var. glabrescens in 10 pots. A conidial suspension of 1. 0 × 106 conidia/ml with 0.01% Tween 80 was prepared by adding sterile distilled water to the YN1931401 culture and scraping with a sterile scalpel. The leaves of 25 healthy plants were sprayed with the conidial suspension, and those of the 25 control plants were sprayed with sterile water. All plants were covered with clear polyethylene bags for 3 days to maintain high humidity and then grown in a greenhouse at diurnal cycles of 18℃ for 18h with light and 22℃ for 6 h in dark. Ten days post-inoculation, the inoculated plants exhibited brown lesions similar to the symptoms observed in the field (Fig. 1-F), whereas no symptoms appeared on the control plants. The same fungus was re-isolated and identified as described above. R. sphaeroidea has been reported on V. fabae and V. sativa in Ethiopia and Israel (Braun 1998), on various Vicia species including V. villosa in California, the United States (Koike et al. 2004) and on V. craccain China (Zhang et al. 2006), but to our knowledge, this is the first report of this fungus causing leaf spot on V. villosa in China.


Plant Disease ◽  
2010 ◽  
Vol 94 (11) ◽  
pp. 1272-1282 ◽  
Author(s):  
Gary A. Secor ◽  
Viviana V. Rivera ◽  
M. F. R. Khan ◽  
Neil C. Gudmestad

Cercospora leaf spot, caused by the fungus Cercospora beticola Sacc., is the most serious and important foliar disease of sugar beet (Beta vulgaris L.) wherever it is grown worldwide. Cercospora leaf spot first caused economic damage in North Dakota and Minnesota in 1980, and the disease is now endemic. This is the largest production area for sugar beet in the United States, producing 5.5 to 6.0 million metric tons on approximately 300,000 ha, which is 56% of the sugar beet production in the United States. This Plant Disease feature article details a cooperative effort among the participants in the sugar beet industry in this growing area and represents a successful collaboration and team effort to confront and change a fungicide resistance crisis to a fungicide success program. As a case study of success for managing fungicide resistance, it will serve as an example to other pathogen–fungicide systems and provide inspiration and ideas for long-term disease management by fungicides.


Plant Disease ◽  
2014 ◽  
Vol 98 (8) ◽  
pp. 1153-1153 ◽  
Author(s):  
A. Milosavljević ◽  
E. Pfaf-Dolovac ◽  
M. Mitrović ◽  
J. Jović ◽  
I. Toševski ◽  
...  

Carrot (Daucus carota L. subsp. sativus [Hoffm.] Arcang.) is an important vegetable in Serbia, where it is grown on nearly 8,000 ha. In August 2012, ~1,500 ha of carrot fields were inspected in southern Bačka in North Serbia. In nearly 40% of the fields, severe foliar and stem symptoms characteristic of cercospora leaf spot of carrot, caused by Cercospora carotae (Pass.) Solheim (3), were observed. Lesions on stems were oblong, elliptical, and more or less sunken, while those on the leaves were amphigenous, subcircular, light brown in the center, and surrounded by a dark brown margin. Conidiophores emerging from the lesions formed very loose tufts but sometimes were solitary. Conidiophores were simple and straight to subflexuous with a bulbous base (17 to 37 × 3 to 5 μm). Conidia were 58 to 102 × 2 to 4 μm, solitary, cylindrical to narrowly-obclavate, and hyaline to subhyaline with 2 to 6 septa. To obtain monosporial isolates, the conidia from one lesion were placed on water agar plates at 25°C in the dark for 24 h, after which single germinated conidia were selected and each placed on a petri dish containing potato dextrose agar (PDA). To confirm pathogenicity of three of the isolates, Koch's postulates were tested on carrot seedlings (3-true-leaf stage of growth) of a Nantes cultivar, SP-80, with 12 plants tested/isolate and 12 non-inoculated plants used as a control treatment. The leaves were atomized until runoff with the appropriate C. carotae spore suspension (104 conidia/ml sterilized water), while control plants were atomized with sterile water. All plants were then incubated in a dew chamber for 72 h, then transferred to a greenhouse at 25 ± 2°C. After 2 weeks, characteristic symptoms resembling those observed in the field developed on all inoculated plants; control plants were asymptomatic. The pathogen was re-isolated from all inoculated plants, and identity of the re-isolated fungi confirmed morphologically as described above, and molecularly as described below. The pathogenicity test was repeated with no significant differences in shape and size of lesions, or dimensions of conidiophores and conidia among isolates. To verify the pathogen identity molecularly, the 28S rDNA was amplified and sequenced using the V9G/LR5 primer set (2,4) as well as internal primers OR-A (5′-ATACCCGCTGAACTTAAGC-3′) and 2R-C (5′-AAGTACTTTGGAAAGAG-3′); the ITS region of rDNA using the ITS1/ITS4 universal primers (5); and histone H3 gene (H3) using the CylH3F/CylH3R primers (1). The sequences for the three isolates were deposited in GenBank as Accession Numbers KF468808 to KF468810, KF941306 to KF941308, and KF941303 to KF941305 for the 28S rDNA, ITS and H3 regions, respectively. BLAST results for the ITS sequences indicated 94% similarity to the ITS sequence of an isolate of Pseudocercosporella capsellae (GU214662) and 92% similarity to the ITS sequence of an isolate of C. capsici (HQ700354). The H3 sequences shared 91% similarity with that of several Cercospora spp., e.g., C. apii (JX142548), C. beticola (AY752258), and C. capsici (JX142584), all of which shared the same amino acid sequence of the encoded H3 protein. Also, the 28S rDNA sequences had 99% similarity (identity of 318/319, with 0 gaps) with the single sequence of C. carotae available in GenBank (AY152628), which originated from Norway. This is, to our knowledge, the first report of C. carotae on carrot crops in Serbia as well as southeastern Europe. References: (1) P. W. Crous et al. Stud. Mycol. 50:415, 2004. (2) G. S. de Hoog and A. H. G. Gerrits van den Ende. Mycoses 41:183, 1998. (3) W. G. Solheim. Morphological studies of the genus Cercospora. University of Illinois, 1929. (4) R. Vilgalys and M. Hester. J. Bacteriol. 172:238, 1990. (5) T. J. White et al. PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, CA, 1990.


Sign in / Sign up

Export Citation Format

Share Document