scholarly journals First Report of Soybean dwarf virus on Soybean in Wisconsin

Plant Disease ◽  
2004 ◽  
Vol 88 (11) ◽  
pp. 1285-1285 ◽  
Author(s):  
A. Phibbs ◽  
A. Barta ◽  
L. L. Domier

Soybean dwarf virus (SbDV) causes widespread economic losses on soybean (Glycine max (L.) Merr.) in Japan (4), and has been reported on soybean in Virginia (2), in various legumes in the southeastern United States (1), and in peas in California (3). During late July and early August of 2003, soybean plants in Wisconsin were surveyed for SbDV. In 286 soybean fields at the R2-R4 growth stage, the uppermost fully unfurled leaf was collected from 10 plants at each of five sites. Samples were collected at random without regard to symptoms. SbDV symptom information was not recorded. Samples were stored on ice until frozen at -80°C. Five fields in four Wisconsin counties (Columbia, Lafayette, Sauk, and Waushara) tested positive for SbDV using double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). DAS-ELISA testing was conducted with reagents from Agdia, Inc (Elkhart, IN) following the manufacturer's protocol. Absorbance was read at 405 nm with a Stat Fax 2100 microplate reader (Awareness Technology, Inc., Palm City, FL) or visually evaluated. DAS-ELISA did not discriminate between strains of SbDV. The presence of SbDV was confirmed, and strain identity was inferred as dwarfing strain using reverse transcription-polymerase chain reaction (RT-PCR). Total RNA was extracted from homogenized leaf tissue, reverse transcribed, and amplified with the SuperScript One Step RT-PCR System (Invitrogen, Carlsbad, CA) and SbDV-specific primers (5′-CTGCTTCTGGTGATTACACTGCCG-3′ and 5′-CGCTTTCATTTAACGYCATCAAAGGG-3′). Size of the RT-PCR products (110 bp) was consistent with the dwarfing strain, SbDV-D. All locations that tested positive for SbDV showed soybean aphids, Aphis glycines Matsumura (Homoptera: Aphididae), on 100% of soybean plants. Several aphid species have been reported to vector SbDV, but at this time, vector relations in the Wisconsin infections are unknown. To our knowledge, this is the first report of SbDV infecting soybean in Wisconsin. References: (1) V. D. Damsteegt et al. Plant Dis. 79:48, 1995. (2) A. Fayad et al. Phytopathology (Abstr.) 90(Suppl.):S132, 2000. (3) G. R. Johnstone et al. Phytopathology (Abstr.) 74:795(A43), 1984. (4) T. Tamada et al. Ann. Phytopathol. Soc. Jpn. 35:282, 1969.

Plant Disease ◽  
2003 ◽  
Vol 87 (9) ◽  
pp. 1148-1148 ◽  
Author(s):  
I. Mavrič ◽  
M. Viršček Marn ◽  
D. Koron ◽  
I. Žežlina

In 2002, severe vein yellowing and partial or complete yellowing of leaves was observed on some shoots of red raspberry (Rubus idaeus) cvs. Golden Bliss and Autumn Bliss. Sap of infected plants of cv. Golden Bliss was inoculated onto Chenopodium quinoa and Nicotiana benthamiana. Faint chlorotic spots were observed on inoculated leaves of C. quinoa approximately 14 days after inoculation but no systemic symptoms appeared. No symptoms were observed on N. benthamiana. Raspberry bushy dwarf virus (RBDV) was detected in the original raspberry plant using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with polyclonal antiserum (Loewe Biochemica, Sauerlach, Germany). Systemic infections of inoculated C. quinoa and N. benthaminana were confirmed using DAS-ELISA. In 2001 and 2002, unusual virus symptoms were observed on grapevine grafts (Vitis vinifera) of cv. Laški Rizling. Symptoms appeared as curved line patterns and yellowing of the leaves. No nepoviruses were found in symptomatic plants, but RBDV was confirmed using DAS-ELISA. RBDV infection was later confirmed in grapevine cv. Štajerska Belina with similar symptoms. RBDV was transmitted mechanically from grapevine to C. quinoa where it was detected by immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR). IC-RT-PCR was used to amplify a part of the coat protein gene of the virus from raspberry and grapevine, and the amplification products were sequenced (1). The obtained sequence shared at least 93% nucleotide sequence identity with other known RBDV sequences, which confirmed the serological results. To our knowledge, this is the first report of the natural occurrence of RBDV in grapevine and also of RBDV infection of red raspberry in Slovenia. Reference: (1) H. I. Kokko et al. Biotechniques 20:842, 1996.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 526-526 ◽  
Author(s):  
K. Bananej ◽  
C. Desbiez ◽  
C. Wipf-Scheibel ◽  
I. Vahdat ◽  
A. Kheyr-Pour ◽  
...  

A survey was conducted from 2001 to 2004 in the major cucurbit-growing areas in Iran to reassess the relative incidence of cucurbit viruses. Severe yellowing symptoms were observed frequently on older leaves of cucurbit plants in various regions in outdoor crops, suggesting the presence of Cucurbit aphid-borne yellows virus (CABYV, genus Polerovirus, family Luteoviridae) (1,2). Leaf samples (n = 1019) were collected from plants of melon (Cucumis melo L.), cucumber (C. sativus L.), squash (Cucurbita sp.), and watermelon (Citrullus lanatus L.) showing various virus-like symptoms (mosaic, leaf deformation, yellowing). All samples, collected from 15 provinces, were screened for the presence of CABYV by double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) with IgGs and alkaline phosphatase-conjugated IgGs against a CABYV reference isolate (1). Of the 1,019 samples tested, 471 were positive for CABYV using DAS-ELISA. Some of the positive samples had typical severe yellowing symptoms while symptoms in other samples were masked by mosaic or leaf deformations caused by other viruses frequently found in mixed infections (data not shown). During the entire survey, CABYV was detected by DAS-ELISA in 201 of 503 melon samples, 72 of 129 cucumber samples, 158 of 249 squash samples, and 40 of 138 watermelon samples. These results indicate that CABYV is widely distributed on four cucurbit species in the major growing areas of Iran. In order to confirm CABYV identification, total RNA extracts (TRI-Reagent, Sigma Chemical, St Louis, MO) were obtained from 25 samples that were positive using DAS-ELISA originating from Khorasan (n = 4), Esfahan (n = 6), Teheran (n = 3), Hormozgan (n = 4), Azerbaiejan-E-Sharqi (n = 4), and Kerman (n = 4). Reverse transcription-polymerase chain reactions (RT-PCR) were carried out using forward (5′-CGCGTGGTTGTGG-TCAACCC-3′) and reverse (5′-CCYGCAACCGAGGAAGATCC-3′) primers designed in conserved regions of the coat protein gene according to the sequence of a CABYV reference isolate (3) and three other unpublished CABYV sequences. RT-PCR experiments yielded an expected 479-bp product similar to the fragment amplified with extracts from the reference isolate. No amplification of the product occurred from healthy plant extracts. To our knowledge, this is the first report of the occurrence of CABYV in Iran on various cucurbit species. The high frequency (46.2%) with which CABYV was detected in the samples assayed indicates that this virus is one of the most common virus infecting cucurbits in Iran. References: (1) H. Lecoq et al. Plant Pathol. 41:749, 1992 (2) M. A. Mayo and C. J. D'Arcy. Page 15 in: The Luteoviridae. H. G. Smith and H. Barker, eds. CAB International Mycological Institute, Wallingford, UK, 1999. (3) H. Guilley et al. Virology 202:1012, 1994.


Plant Disease ◽  
1998 ◽  
Vol 82 (12) ◽  
pp. 1405-1405 ◽  
Author(s):  
J. Staniulis ◽  
J. Stankiene ◽  
K. Sasnauskas ◽  
A. Dargeviciute

Plum pox (sharka) disease caused by plum pox potyvirus (PPV) is considered the most important virus disease of stone fruit trees in Europe and the Mediterranean region. Nearly all those countries that produce stone fruits are affected (3). The causal virus of the disease is a European Plant Protection Organization A2 quarantine pathogen. Symptoms of leaf mottling, diffuse chlorotic spots, rings, and vein banding of varied intensity characteristic for plum pox virus infection were observed in the plum (Prunus domestica) orchard tree collection of the Lithuanian Institute of Horticulture in Babtai in 1996. Presence of this virus in the diseased trees was confirmed by double antibody sandwich-enzyme-linked immunosorbent assay (DAS-ELISA) with kits from BIOREBA (Reinach, Switzerland) and by polyclonal antibodies raised against a Moldavian isolate of PPV courtesy of T. D. Verderevskaya (Institute of Horticulture, Kishinev, Moldova). ELISAs with both sources of antiserum were positive for presence of PPV. Electron microscopy revealed the presence of potyvirus-like particles averaging 770 nm in extracts of mechanically inoculated plants of Chenopodium foetidum (chlorotic LL [local lesions]) and Pisum sativum cvs. Rainiai and Citron (mottling). For molecular diagnosis and characterization of this isolate, PPV-971, reverse transcription-polymerase chain reaction (RT-PCR) was employed. Total RNA from the leaves of infected pea was isolated as described (2). High molecular weight RNA selectively precipitated with 2 M lithium chloride was used for RT-PCR amplification of the coat protein encoding sequence by use of specific primers complementary to 5′ and 3′ parts of PPV coat protein L1 (GenBank accession no. X81081). Amino acid sequence comparison with GenBank data indicated 98.2% similarity with coat protein of PPV potyvirus isolated by E. Mais et al. (accession no. X81083) and 97.3% with PPV strain Rankovic (1).The specific DNA fragment, corresponding to predicted coat protein sequence size, was cloned into Escherichia coli pUC57 for DNA sequencing. Expression of the cloned sequence in bacteria and yeast expression systems is under investigation. The presence of PPV in plum trees in the 9-year-old collection at Babtai was confirmed by DAS-ELISA in 1997 and again in 1998. PPV was then detected in 20% of symptomatic trees of three cultivars. The Lithuanian PPV isolate reacted positively with “universal” Mab.5b and with a Mab (Mab.4DG5) specific for PPV-D. No reaction was observed with Mabs specific for PPV-M (Mab.AL), PPV-C (Mab.AC and Mab.TUV), and PPV-El Amar (Mab.EA24). PPV-971 seems to be a typical member of the less aggressive Dideron strain cluster of PPV (D. Boscia, personal communication). This is the first report of PPV in Lithuania and confirms the necessity for continuing the precautionary measures established in this country for indexing of nursery plum trees used for graft propagation. References: (1) S. Lain et al. Virus Res. 13:157, 1989. (2) J. Logemann et al. Anal. Biochem. 163:16, 1987. (3) M. Nemeth. OEPP/EPPO Bull. 24:525, 1994.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tiago Silva Jorge ◽  
Mirtes Freitas Lima ◽  
Leonardo Silva Boiteux ◽  
Maria Esther N. Fonseca ◽  
Elliot W. Kitajima

Endive (Cichorium endivia L.) is a very important cash crop for small farmers in Brazil. During inspections conducted in the summer season of 2019–2020, leaf samples of C. endivia ‘La Spezia’ seedlings exhibiting typical symptoms of orthotospoviruses infection (viz. concentric chlorotic spots and apical leaf deformation; ≈ 10%) were collected in commercial greenhouses in Brasília–DF, Central Brazil. Leaves of one healthy and three symptomatic plants were initially evaluated via double antibody sandwich enzyme-linked immunosorbent assay (DAS–ELISA) with polyclonal antibodies (produced at CNPH) raised against the nucleoprotein of the three major orthotospoviruses: tomato spotted wilt orthotospovirus (TSWV), groundnut ringspot orthotospovirus (GRSV) and tomato chlorotic spot orthotospovirus (TCSV). Strong serological reactions were observed only against GRSV antibodies exclusively in extracts from symptomatic samples. In order to confirm the causal agent of those symptoms, total RNA was extracted (Trizol®; Sigma) from infected leaf samples and used in a two-step reverse transcriptase polymerase chain reaction (RT–PCR) approach. Synthesis of the cDNA was carried out with the J13 primer (5’–CCC GGA TCC AGA GCA AT–3’) (Cortez et al., 2001) followed by PCR assays with the primer pair BR60 (5’–AGA GCA ATC GTG TCA–3`) and BR65 (5’–ATC AAG CCT TCT GAA AGT CAT–3’) (Eiras et al., 2001). This primer set amplifies a fragment of 453 bp including the untranslated region at the 3’ terminus of the small RNA and the protein N–coding gene of at least five orthotospoviruses: TSWV, GRSV, TCSV, chrysanthemum stem necrosis orthotospovirus (CSNV) and zucchini lethal chlorosis orthotospovirus (ZLCV) (Eiras et al., 2001). The obtained amplicons (≈ 432 bp) were subsequently subjected to Sanger dideoxy nucleotide sequencing at CNPH. BLASTn analysis showed >99% identity with a wide array of GRSV isolates available in the GenBank. The nucleotide sequence of Tospo #1 (MT215222) and Tospo #3 (MT215224) isolates displayed 100% identity between them, whereas the Tospo #2 (MT215223) isolate displayed one non–synonymous point mutation in the 3’ untranslated region in comparison with the former two isolates. Three plants of C. endivia, Capsicum annuum L. cv. Ikeda, tomato (Solanum lycopersicum L.) cv. Santa Clara and its isoline ‘LAM–147’ (with the Sw–5 resistance gene), Nicotiana rustica L., Lactuca sativa L. (‘Vanda’ and ‘PI-342444’) and Gomphrena globosa L. were mechanically inoculated individually with each GRSV isolate in order to confirm their pathogenicity. Chlorotic lesions and mosaic were observed seven days after inoculation of all plant materials, except the tomato inbred line ‘LAM–147’, which has the Sw-5 gene that confers broad–spectrum resistance to all Brazilian orthotospoviruses (Boiteux and Giordano, 1993). The GRSV infection was confirmed via DAS–ELISA and RT–PCR 15 days after inoculation, using the same set of antibodies and the primer pair BR60 / BR65. Transmission electron microscopy of ultrathin sections from symptomatic leaf tissues, both from field–infected and experimentally inoculated endive revealed the presence of typical orthotospovirus particles, within endoplasmic reticulum cisternae. Natural infection of endive by TSWV has been reported in Greece (Chatzivassiliou et al., 2000) and by TCSV in São Paulo State, Brazil and in Florida, USA (Subramanya Sastry et al., 2019). To our knowledge, it is the first report of GRSV naturally infecting this Asteraceae species in Brazil. Confirmation of GRSV infection of C. endivia plants is a relevant piece of information aiming to design effective disease management strategies. References: Boiteux, L.S. and Giordano, L. B. 1993. Euphytica 71: 151. Eiras, M. et al. 2001. Fitopatol. Bras. 26: 170. Chatzivassiliou, E.K. et al. 2000 Ann. Appl. Biol. 137: 127. Cortez, I., et al. 2001. Arch. Virol. 146: 265. Subramanya Sastry, K., et al. 2019. Encyclopedia of plant viruses and viroids. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3912-3.


Plant Disease ◽  
2021 ◽  
Author(s):  
Annika Luoto ◽  
Mikko Lehtonen ◽  
Jari Valkonen ◽  
Johanna Santala

Soybean dwarf virus (SbDV, genus Luteovirus) is a single-stranded positive-sense RNA virus able to infect several legume species. SbDV was first reported in Japan where it was associated with significant yield losses in soybean (Tamada, 1969). Since then the virus has been detected worldwide. In Europe, the virus has only been reported from Germany (Abraham et al. 2007; Gaafar et al. 2020). In July 2018, several white clover plants (Trifolium repens L.) with leaf discoloration were observed in different locations in Oulu region in northern Finland. Individual plants were collected and analysed for the presence of viruses using small-RNA (sRNA) sequencing (Kreuze et. al. 2009) and reverse transcription-PCR (RT-PCR). Total RNA was extracted using EZNA micro RNA kit (Omega Bio-Tek, GA, USA). For sRNA analysis, sequencing libraries were constructed using the TruSeq small RNA library prep kit (Illumina, CA, USA) and sequenced on Illumina MiSeq platform. On average, 1.3 million single-end reads were obtained per sample, of which 27% were 18-25 nt long and used for the subsequent analysis. Contig assembly and virus identification with VirusDetect software (Zheng et al. 2017) detected SbDV in five out of six white clover samples analysed. Depending on the sample, 26-39 contigs (with lengths up to 301-469 nt) aligned to complete genome of a SbDV isolate previously described from white clover in USA (accession no. JN674402). The cumulative alignment coverage ranged from 35.5 % to 65.3 % with nucleotide identities between 94.4 % and 97.3 %. Additionally, two samples seemed to contain an unidentified closterovirus and one contained White clover cryptic virus 2. No additional viruses were detected from two of the samples.To confirm the presence of SbDV, the samples were tested by RT-PCR using primers MDF, MYF and MUR in multiplex (Schneider et al. 2011) together with SuperScript III One-Step RT-PCR System with the Platinum Taq DNA polymerase kit (Thermo Fisher Scientific, USA), essentially as instructed by the manufacturer. RT-PCR product of approximately 400 bp was produced from each of the five samples previously tested SbDV positive by sRNA analysis. No products were produced from the sample that was SbDV negative in sRNA analysis. Direct sequencing of two of the PCR products produced 347 and 361 bp sequences (GenBank: MZ355392 and MW929169) that were 95.7 % and 95.2 % identical, respectively, to a SbDV isolate (accession no. AB038148) that causes yellowing on soybean and is transmitted by Acyrthosiphon pisum (Terauchi et al. 2003). To our knowledge this is the first report of SbDV in Finland. SbDV is transmitted only by aphids (neither mechanical nor seed transmission occurs). In siRNA analysis all the isolates from Finland formed contigs that aligned almost perfectly (100 % coverage with ≥ 99 % nucleotide identity) to the coat protein (accession no. EF466131) of an SbDV isolate transmittable from white clover to faba bean by A. pisum (Abraham et al. 2007), an aphid common in Finland. Although significant yield losses by SbDV have only been reported on soybean (Tamada, 1969), the virus also causes symptoms in other legume crops, such as growth reduction on pea (Tian et al. 2017) and faba bean (Abraham et al. 2007), both of which are cultivated in Finland. References: Abraham et al. 2007. Plant Dis. 91: 1059. Gaafar et al. 2020. Front microbiol. 11: 583242. Kreuze et al. 2009. Virology 388:1. Schneider et al. 2011. Virology 412: 46. Tamada. 1969. Ann Phytopathol Soc Jpn. 35: 282. Terauchi et al. 2003. Phytopathology 93: 1560. Tian et al. 2017. Viruses 9: 155. Zheng et al. 2017. Virology 500: 130.


Plant Disease ◽  
2013 ◽  
Vol 97 (9) ◽  
pp. 1259-1259 ◽  
Author(s):  
J. Zindović ◽  
C. Lanzoni ◽  
C. Rubies Autonell ◽  
C. Ratti

In September and October 2011, samples were collected from mature peach trees (~17 years old) exhibiting symptoms of chlorotic rings and spots, vein clearing, mosaic, necrosis, leaf distortion, stunting, and rosette formation in a major commercial orchard (~80 ha) near Podgorica, Montenegro. Samples were collected from nine different peach varieties (cvs. Adriana, Caldesi, Gloria, Maria Marta, May Crest, Morsiani, Rita Star, Spring Belle, and Spring Crest). Samples (n = 58) were tested using DAS-ELISA for the presence of Prune dwarf virus (PDV) and Prunus necrotic ringspot virus (PNRSV). Commercial positive and negative controls were included in each ELISA (antisera and controls supplied by BIOREBA AG, Reinach, Switzerland). Only one symptomatic sample from cv. Gloria tested positive for PDV (sample reference: 399/11), a further 11 samples (cvs. Rita Star [six], May Crest [four] and Spring Crest [one]) were positive for PNRSV. Samples were also tested for Plum pox virus (PPV) by real-time RT-PCR (1). The PDV positive sample (399/11) showing mosaic was in mixed infection with PPV, as were 6 of the 11 PNRSV samples, including sample 373/11 with yellow mottling and leaf distortion symptoms. On single-infected PNRSV, sample 368/11 chlorotic line patterns and leaf deformations were observed. To confirm the presence of PDV and PNRSV, positive samples were also tested by RT-PCR. Total RNA was extracted using RNeasy Plant Mini kit (Qiagen, Hilden, Germany). RT-PCR was performed with primer pairs PDV2F/PDV1R (3) and MG1/MG2 (2) specific for PDV and PNRSV, respectively. Amplicons of the expected size, 173 bp for PDV and 675 bp for PNRSV, were obtained from corresponding ELISA-positive samples. Amplified products from three samples (PDV 399/11 and PNRSV 368/11 and 373/11) were cloned into pGEM-T Easy Vector (Promega, Madison, WI) then sent for sequence analysis (MWG-Biotech AG, Edersberg, Germany). Sequence data was compared to sequences published in GenBank. Analysis of sequence obtained from isolate 399/11 (cv. Gloria) corresponded to partial CP gene of PDV, with a high degree of similarity to isolates reported from other parts of the world ranging from 94.2 to 95.9%, showing highest similarity with isolate Ch 137 (L28145). Sequence analyses of CP gene from PNRSV isolates 368/11 (JX569825) and 373/11 (JX569826) proved to be 89.3 to 99.7% identical with corresponding sequences of isolates previously described. In particular, the Montenegrin PNRSV isolates were most closely related to Chilean NctCl.augl isolate from nectarine (EF565253). To demonstrate that the virus was infectious, seedlings of peach cv. GF305 were side grafted with bud-woods from PDV (sample 399/11) and PNRSV-positive samples (samples 368/11 and 373/11) and a healthy control sample. Grafted seedlings were kept in a greenhouse with a under 16-h light regime at 22 to 24°C and observed for symptom development. No symptoms were observed in grafted plants with the healthy control. All plants inoculated with virus-positive samples exhibited stunted vegetation and mild mottle with no difference in symptoms between the two viruses. Indicator plants of peach cv. GF305 inoculated with PPV dual-infected samples (399/11 and 373/11) were subsequently shown to be positive for PPV by real-time RT-PCR. Subsequent DAS-ELISA test on samples from experimentally inoculated trees using specific antisera as described above confirmed PDV and PNRSV infections as expected. These viruses have recently been reported from sour cherry (Prunus cerasus L.) in Serbia (4), ~600 km to the northeast. However, to our knowledge, this is the first report on the occurrence of PDV and PNRSV in Montenegro. References: (1) N. Capote et al. Int. Microbiol. 12:1, 2009. (2) M. Glasa et al. Ann. Appl. Biol. 140:279, 2002. (3) D. R. Parakh et al. Acta Hortic. 386:421, 1996. (4) S. Radičević et al. Genetika 44:285, 2012.


Plant Disease ◽  
2014 ◽  
Vol 98 (10) ◽  
pp. 1449-1449 ◽  
Author(s):  
K. Milojević ◽  
I. Stanković ◽  
A. Vučurović ◽  
D. Nikolić ◽  
D. Ristić ◽  
...  

Tulips (Tulipa sp. L.), popular spring-blooming perennials in the Liliaceae family, are one of the most important ornamental bulbous plants, which have been cultivated for cut flower, potted plant, garden plant, and for landscaping. In May 2013, during a survey to determine the presence of Cucumber mosaic virus (CMV, Cucumovirus, Bromoviridae) on ornamentals in Serbia, virus-like symptoms, including the presence of bright streaks, stripe and distortion of leaves, and reduced growth and flower size, were observed in an open field tulip production in the Krnjaca locality (a district of Belgrade, Serbia). Disease incidence was estimated at 20%. Symptomatic tulip plants were collected and tested for the presence of CMV by double-antibody sandwich (DAS)-ELISA using commercial diagnostic kit (Bioreba, AG, Reinach, Switzerland). Commercial positive and negative controls were included in each ELISA. Of the six tulip plants tested, all were positive for CMV. In bioassay, five plants of each Chenopodium quinoa, Nicotiana tabacum ‘Samsun,’ and N. glutinosa were mechanically inoculated with sap from selected ELISA-positive sample (79-13) using 0.01 M phosphate buffer (pH 7). Chlorotic local lesions on C. quinoa, and severe mosaic and leaf malformations on N. tabacum ‘Samsun’ and N. glutinosa, were observed 5 and 14 days post-inoculation, respectively. All mechanically inoculated plants were positive for CMV in DAS-ELISA testing. For further confirmation of CMV presence in tulip, total RNAs from all ELISA-positive symptomatic tulip plants were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using specific primer pair CMVCPfwd and CMVCPrev (1), which flank conserved fragment of the RNA3 including the entire coat protein (CP) gene and part of 3′- and 5′-UTRs. Total RNAs obtained from the Serbian watermelon CMV isolate (GenBank Accession No. JX280942) and healthy tulip leaves served as the positive and negative controls, respectively. The RT-PCR products of 871 bp were obtained from all six samples that were serologically positive to CMV, as well as from the positive control. No amplicon was recorded in the healthy control. The amplified product which derived from isolate 79-13 was purified (QIAquick PCR Purification Kit, Qiagen), directly sequenced in both directions using the same primer pair as in RT-PCR, deposited in GenBank (KJ854451), and analyzed by MEGA5 software (4). Sequence comparison of the complete CP gene (657 nt) revealed that the Serbian isolate 79-13 shared the highest nucleotide identity of 99.2% (99% amino acid identity) with CMV isolates from Japan (AB006813) and the United States (S70105). To our knowledge, this is the first report on the occurrence of CMV causing mosaic on Tulipa sp. in Serbia. Taking into account vegetative reproduction of tulips and the large scale of international trade with tulip seeding material, as well as wide host range of CMV including a variety of ornamentals (2,3), this is a very important discovery representing a serious threat for the floriculture industry in Serbia. References: (1) K. Milojević et al. Plant Dis. 96:1706, 2012. (2) M. Samuitienė and M. Navalinskienė. Zemdirbyste-Agriculture 95:135, 2008. (3) D. Sochacki. J. Hortic. Res. 21:5, 2013. (4) K. Tamura et al. Mol. Biol. Evol. 28:2731, 2011.


Plant Disease ◽  
2011 ◽  
Vol 95 (1) ◽  
pp. 78-78 ◽  
Author(s):  
K. E. Efthimiou ◽  
A. P. Gatsios ◽  
K. C. Aretakis ◽  
L. C. Papayiannis ◽  
N. I. Katis

Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae) is a mechanically transmitted virus that has emerged as a significant problem of greenhouse tomato crops in Europe and around the world during the past 10 years (1). In spring of 2010, mosaic symptoms were observed on leaves of cherry tomato (Lycopersicon esculentum var. cerasiforme) greenhouse crops (hybrids Shiren, Tomito, and Rubino top) in the areas of Drymos and Vonitsa, located at Aitoloakarnania Prefecture, in Greece. A total of 63 tomato samples (55 from symptomatic and 8 from asymptomatic plants) were collected from 11 greenhouses where disease incidence ranged from 10 to 20%. All samples were tested by double-antibody sandwich (DAS)-ELISA using polyclonal antibodies from BIOREBA, AG (Reinach, Switzerland) for the presence of PepMV, Cucumber mosaic virus (CMV), and Tomato mosaic virus (ToMV). Leaf tissue from PepMV-, CMV-, and ToMV-infected samples and virus-free tomato plants were included in all tests as positive and negative controls, respectively. Results showed that 53 symptomatic samples collected from all greenhouses were infected with PepMV and two were co-infected with PepMV and CMV. Total RNA was extracted from all infected plants with a commercially available kit (Qiagen, Hilden, Germany) and amplified by conventional and real-time reverse transcription (RT)-PCR, using previously reported protocols (2). Positive and negative controls were also included in each assay. The 200-bp amplified PCR fragments of Triple Gene Block 3 (TGB3) obtained from five infected samples were purified and both strands were sequenced. Sequencing data were analyzed, deposited in the GenBank, and compared with other reported sequences. In addition, leaf tissue from five samples infected with only PepMV was used for mechanical inoculation of four plants of Nicotiana glutinosa, N. benthamiana, and tomato (L. esculentum FA 179 hybrid) plants. As negative controls, two plants from each species were used. Sequencing analysis showed that all five PepMV sequences were identical (GenBank Accession Nos. FR686904 to FR686908) and possessed 100% identity PepMVstrain CH2 (DQ000985). Inoculation results showed that the virus was successfully transmitted to N. benthamiana and tomato plants which developed mosaic symptoms, and tested positive by DAS-ELISA and RT-PCR. N. glutinosa plants did not develop any symptoms and were found to be free of PepMV when tested by DAS-ELISA and RT-PCR. To our knowledge, this is the first report of PepMV in Greece. Further studies on the disease prevalence and incidence and its economic impact on tomato production are required. PepMV is currently under quarantine status in the EU and therefore new protective measures should be recommended to prevent the spread of PepMV to other regions of Greece. References: (1) I. M. Hanssen and B. P. H. J. Thomma. Mol. Plant Pathol. 11:179, 2010. (2) K. S. Ling et al. J. Virol. Methods 144:65, 2007.


2020 ◽  
Author(s):  
LING LI ◽  
YING LI ◽  
Shaofang Lu ◽  
Jing Dong ◽  
Haixia Xu ◽  
...  

Abstract BACKGROUND Dengue virus (DENV) can be transmitted through blood transfusion. DENV was not screened regularly in Xishuangbanna Blood Center. This study was conducted in Xishuangbanna Blood Center with an attempt to develop DENV screening strategies in one of China’s high-incidence areas.METHODS Blood samples were collected randomly between June 2019 and August 2019. These samples were first screened for dengue IgG and IgM antibodies using enzyme-linked immunosorbent assay (ELISA). All reactive samples and some randomly-chosen non-reactive samples were used to detect DENV RNAs using real time polymerase-chain-reaction (RT-PCR) assay. After RT-PCR assay, these samples were further tested for soluble nonstructural protein 1 (NS1) using colloidal gold method. The demographic data of DENV positive donors were collected.RESULTS A total of 2,254 donor samples were collected and tested for dengue IgG and IgM antibodies by ELISA between June 2019 and August 2019. ELISA testing revealed that 598 donor samples were anti-IgG and/or anti-IgM reactive, with a serological prevalence rate of 26.53%. Among all the donor samples, 26 were RT-PCR positive and/or NS1 positive. Moreover, there were significant differences in the prevalence rate of DENV in terms of occupation (P=0.001), education(P<0.001) and ethnicity (P=0.026). CONCLUSION The prevalence of DENV in Xishuangbanna Blood Center was higher than most other blood centers that have implemented DENV donor screening. Our study provides the first-hand data about the prevalence of DENV and allows development of a screening strategy for clinical use.


Plant Disease ◽  
2003 ◽  
Vol 87 (1) ◽  
pp. 102-102 ◽  
Author(s):  
S. Adkins ◽  
L. Breman ◽  
C. A. Baker ◽  
S. Wilson

Blackberry lily (Belamcanda chinensis (L.) DC.) is an herbaceous perennial in the Iridaceae characterized by purple-spotted orange flowers followed by persistent clusters of black fruit. In July 2002, virus-like symptoms including chlorotic ringspots and ring patterns were observed on blackberry lily leaves on 2 of 10 plants in a south Florida ornamental demonstration garden. Inclusion body morphology suggested the presence of a Tospovirus. Tomato spotted wilt virus (TSWV) was specifically identified by serological testing using enzyme-linked immunosorbent assay (Agdia, Elkhart, IN). Sequence analysis of a nucleocapsid (N) protein gene fragment amplified by reverse transcription-polymerase chain reaction (RT-PCR) with primers TSWV723 and TSWV722 (1) from total RNA confirmed the diagnosis. Nucleotide and deduced amino acid sequences of a 579 base pair region of the RT-PCR product were 95 to 99% and 95 to 100% identical, respectively, to TSWV N-gene sequences in GenBank. Since these 2-year-old plants were grown on-site from seed, they were likely inoculated by thrips from a nearby source. Together with a previous observation of TSWV in north Florida nursery stock (L. Breman, unpublished), this represents, to our knowledge, the first report of TSWV infection of blackberry lily in North America although TSWV was observed in plants of this species in Japan 25 years ago (2). References: (1) S. Adkins, and E. N. Rosskopf. Plant Dis. 86:1310, 2002. (2) T. Yamamoto and K.-I. Ohata. Bull. Shikoku Agric. Exp. Stn. 30:39, 1977.


Sign in / Sign up

Export Citation Format

Share Document