Low Substrate pH–Induced Iron/Manganese Toxicity of New Guinea Impatiens: A Diagnostic Guide

2018 ◽  
Vol 19 (4) ◽  
pp. 324-328
Author(s):  
W. Garrett Owen ◽  
Brian E. Whipker ◽  
Josh B. Henry ◽  
Paul Cockson ◽  
Hunter Landis

New Guinea impatiens (Impatiens hawkeri) are popular bedding plants, but the knowledge of diagnosing abiotic disorders during greenhouse production is evolving. Symptomology of nutrient deficiencies and excessive fertilization have been extensively documented. Exact symptomology of low substrate pH (<5.5) and toxic iron (Fe) and/or manganese (Mn) leaf tissue levels are not defined or photographed, thereby aiding in diagnosis. Therefore, the objective of the diagnostic guide was to photograph symptomology and document the tissue levels in New Guinea impatiens to provide a definitive guide of low substrate pH–induced Fe and/or Mn toxicity.

1998 ◽  
Vol 16 (3) ◽  
pp. 138-142
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

Abstract Conditioning treatments were evaluated for effects on growth of bedding plants during greenhouse production and carryover effects on plant performance in the landscape. Treatments included two fertilization regimes using a complete water soluble fertilizer applied three times/week at 500 ppm N, designated ‘high N’, or at 50 ppm N, designated the ‘low N’ treatment. Other treatments included: ebb and flow irrigation, drought stress for up to 2 h wilt/day, 5000 ppm B-Nine (daminozide), 45 ppm Bonzi (paclobutrazol; 180 ppm on columbine), and brushing (40 strokes twice daily). Unless otherwise noted all plants, including controls, were maintained well-irrigated and fertilized with 250 ppm N three times/week. Marigolds and New Guinea impatiens grown under low N during greenhouse production exhibited reduced plant height and width relative to control plants at 4 weeks after planting (WAP) in the landscape. Plant quality ratings of all species conditioned with low N were lower than those of controls 2 and 4 WAP. Plant height of New Guinea impatiens conditioned with high N was greater than that of controls 4 WAP in the landscape. Marigolds subjected to drought in the greenhouse were still shorter than controls 2 and 4 WAP. Persistent height reductions in the landscape in response to B-Nine were observed in ageratum 2 and 4 WAP and to Bonzi in New Guinea impatiens through 8 WAP. Brushing reduced the height of all species except ageratum in the greenhouse, but had no carryover effect on plant growth in the landscape. At 4 weeks after treatment, plant height of columbine treated with low or high N, drought, brushing, or B-Nine was reduced relative to controls, but all plants were similar in size in the landscape.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 777B-777
Author(s):  
Dharmalingam S. Pitchay* ◽  
Jonathan M. Frantz ◽  
Jonathan M. Locke ◽  
Charles Krause

Growers tend to over fertilize their plants as a way to minimize the likelihood of encountering nutrient deficiencies that would reduce the quality of their plants. Much of the nutrition literature focuses on the nutritional extremes namely of toxicity and deficiency. Once plants get to this stage, little can be done to correct the problem. Characteristics of plant performance in super-optimal conditions, yet below toxic levels, is less well known, and needs to be developed to help growers identify problems in their production practices before they impact sales. New Guinea Impatiens were grown over a wide range of N, K, and B levels, from 15% to 400% full strength Hoagland's solution for each nutrient after establishing transplanted rooted cuttings in a peat: perlite soilless media. Plants were grown for four weeks during treatment, during which time the flowers were pinched. After only 2 weeks of treatment, plants with 200% and 400% N were significantly shorter than control plants and plants with 15% N. Reflectance measurements and photographs were made twice a week. At the end of the four weeks, plant tissue was analyzed for form of N, root development and structure, and leaf area. Tissue samples were also analyzed with SEM and energy dispersive X-ray analysis to determine changes in nutrient location and tissue structure. This data provides insight into the nutrition economy of plants in general, tests the use of reflectance spectrometry as a method of detecting super-optimal fertilizer concentrations, and will help growers optimize their fertilization requirements to reduce production costs yet maintain high plant quality.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1099c-1099
Author(s):  
J. Phillip McKnight ◽  
G. L. Klingaman

Eighteen New Guinea impatiens cultivars were evaluated for performance as bedding plants and for suitability as hanging basket plants. The cultivars were treated with three growth retarding chemicals (B-9, Sumagic and Cutless) to determine their effect on plant growth, branching and overall flower development. Two applications of 2500 ppm B-9 produced the most commercially acceptable plants. Height and spread were reduced by approximately 30 percent with no reduction in the number of flowers produced or the number of days to bloom. Cutless and Sumagic applications reduced growth approximately 50 percent and delayed blooming as much as 2 weeks when compared to the untreated control. Growth regulator treatment had no effect on the number of branches produced except with Sumagic which resulted in an overall reduction in branching.


HortScience ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 235-238 ◽  
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

During greenhouse production in Spring 1995, conditioning treatments were applied to columbine (Aquilegia×hybrida Sims `McKana Giants'), New Guinea impatiens (Impatiens hawkeri Bull. `Antares'), marigold (Tagetes erecta L. `Little Devil Mix') and ageratum (Ageratum houstonianum Mill. `Blue Puffs') plants. Treatments included: mechanical conditioning (brushing 40 strokes twice daily); moisture stress conditioning (MSC) (wilting for ≈2 hours per day); undisturbed ebb-and-flow irrigation; overhead irrigation; high (500 mg·L-1 N) or low (50 mg·L-1 N) 3×/week N fertilizer regimes; daminozide (5000 mg·L-1); or paclobutrazol (30, 45, or 180 mg·L-1). One week after initiation of treatments, individual plants in separate greenhouses were inoculated with two adult green peach aphids (Myzus persicae Sulzer) or five two-spotted spider mites (Tetranychus urticae Koch). A natural infestation of western flower thrips (Frankliniella occidentalis Pergande) in the mite-inoculated greenhouse provided an additional insect treatment. Brushing was the only treatment that consistently reduced thrips and mite populations. Aphid populations were lower on low-N than on high-N plants, but thrips and mite populations were not consistently affected by plant fertilization. Moisture stress conditioning tended to increase aphid populations on New Guinea impatiens and marigold, but had little effect on spider mite or thrips populations. Ebb-and-flow irrigation reduced the mite population on ageratum relative to that on overhead irrigated (control) plants. Plant growth regulators did not consistently affect pest populations. Chemical names used: butane-dioic acid mono(2,2-dimethylhydrazide) (daminozide); β-[(4-chlorophenyl)methyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-1-ethanol (paclobutrazol).


Plant Disease ◽  
2020 ◽  
Author(s):  
Yingyu Liu ◽  
Tyler Helmann ◽  
Paul Stodghill ◽  
Melanie Filiatrault

New Guinea Impatiens (NGI, Impatiens hawkeri) are popular bedding plants that can be affected by a number of pathogens. Using 16S rDNA sequencing and genus-specific PCR, we identified the first Dickeya dianthicola strain isolated from NGI presented with blackleg symptoms, herein designated as D. dianthicola 67-19. Here, we report a high-quality complete and annotated genome sequence of D. dianthicola 67-19. The 4,851,809 bp genome was assembled with Nanopore reads and polished with Illumina reads, yielding 422× and 105× coverage, respectively. This closed genome provides a resource for future research on comparative genomics and biology of D. dianthicola, which could translate to improved detection and disease management.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 829B-829
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

Two weeks after planting, plugs of New Guinea impatiens (Impatiens × hybrida), marigold (Tagetes erecta), or ageratum (Ageratum Houstonianum) were subjected to eight conditioning treatments: untreated, low N (50 ppm), high N (500 ppm), ebb/flow watering, drought, brushing (40 strokes twice daily), daminozide (5000 ppm), or paclobutrazol (45 ppm). Fertilizers were applied three times per week at 250 ppm N for all plants not treated with high or low N. Five adult twospotted spider mites were placed on each plant 1 week after treatment. New Guinea impatiens height was reduced by low N, brushing, or paclobutrazol at 4 weeks after treatment. Spider mite populations were reduced only by brushing. Marigold height was reduced by low N, drought, or brushing, but spider mite counts were reduced by brushing or paclobutrazol. Height of ageratum was reduced by low N, daminozide, or paclobutrazol, but spider mite counts were reduced by ebb/flow or brushing at 4 weeks after treatment.


1993 ◽  
Vol 36 (6) ◽  
pp. 1887-1893
Author(s):  
G. E. Meyer ◽  
G. Ridder ◽  
J. B. Fitzgerald ◽  
D. D. Schulte

2016 ◽  
Vol 34 (4) ◽  
pp. 118-122
Author(s):  
A.K. Ostrom ◽  
C.C. Pasian

This manuscript describes the effect of controlled-release, and water-soluble fertilizers on the growth and quality of New Guinea impatiens (NGI) (Impatiens hawkeri Bull.). Three different fertilizers were applied at three rates each in order to investigate their effect on growth and quality of ‘Paradise New Red.’ NGI. Fertilizer treatments included 1) a 20-4.4-16.6 water-soluble fertilizer (WSF), 2) a 10-1.8-2.5 soybean-based fertilizer (SBF), and 3) a 15-4-10, three-to four-month longevity controlled-release fertilizer (CRF). CRF was applied as a pre-plant at 1×, 0.75×, and 0.5× the label rate. WSF and SBF fertigation rates of 75, 150, and 250 mg·L−1 N (75, 150, and 250 ppm N), respectively, were used based on a common range of fertigation rates in a greenhouse setting from what is considered relatively low, moderate, and high for NGI production. Plants were irrigated or fertigated by hand every 1 to 5 days as needed, based on environmental conditions and plant size, with either approximately 300 mL (10.4 oz) of either tap water or a fertilizer solution. SPAD readings, above ground plant weight, consumer preference ratings, and cumulative flower number were measured and used to calculate a quality index (QI). Optimal fertilizer rates as determined by the QI were found to be 1) CRF at 7.11 kg·m−3 (11.8 lb·yd−3), 2) SBF at 150 mg·L−1 (150 ppm) N, and 3) WSF at 75 mg·L−1 (75 ppm) N. With the application method used in this work, the WSF was more efficient than the SBF because it produced high quality plants with less fertilizer applied. While for the most part overall consumer preference ratings coincided with plant dry weight, there were some exceptions, indicating that consumers can prefer plants that are not necessary the largest as indicated by their dry weights. Consumer preferences may not coincide with typical plant parameters of plant growth all the time. Consumer preferences should be always considered in an industry that sell its products based mainly on their appearance.


HortScience ◽  
2017 ◽  
Vol 52 (10) ◽  
pp. 1362-1367 ◽  
Author(s):  
Josh B. Henry ◽  
Ingram McCall ◽  
Brian Jackson ◽  
Brian E. Whipker

A series of experiments investigated the effects of increasing phosphate–phosphorus (P) concentrations on the growth and development of four horticultural species. In experiment 1, petunia [Petunia atkinsiana (Sweet) D. Don ex W.H. Baxter] plants were grown using eight P concentrations, and we found that the upper bound for plant growth was at 8.72–9.08 mg·L−1 P, whereas concentrations ≤2.5 mg·L−1 P caused P deficiency symptoms. Experiment 2 investigated P growth response in two cultivars each of New Guinea impatiens (Impatiens hawkeri W. Bull) and vinca [Catharanthus roseus (L.) G. Don]. Growth for these plants was maximized with 6.43–12.42 mg·L−1 P. In experiment 3, ornamental peppers (Capsicum annuum L. ‘Tango Red’) were given an initial concentration of P for 6 weeks and then switched to 0 mg·L−1 P to observe whether plants could be supplied with sufficient levels of P, and finished without P to keep them compact. Plants switched to restricted P began developing P deficiency symptoms within 3 weeks; however, restricting P successfully limited plant growth. These experiments indicated that current P fertilization regimens exceed the P requirements of these bedding plants, and depending on species, concentrations of 5–15 mg·L−1 P maximize growth.


Sign in / Sign up

Export Citation Format

Share Document