scholarly journals Conditioning Treatments Affect Insect and Mite Populations on Bedding Plants in the Greenhouse

HortScience ◽  
1999 ◽  
Vol 34 (2) ◽  
pp. 235-238 ◽  
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

During greenhouse production in Spring 1995, conditioning treatments were applied to columbine (Aquilegia×hybrida Sims `McKana Giants'), New Guinea impatiens (Impatiens hawkeri Bull. `Antares'), marigold (Tagetes erecta L. `Little Devil Mix') and ageratum (Ageratum houstonianum Mill. `Blue Puffs') plants. Treatments included: mechanical conditioning (brushing 40 strokes twice daily); moisture stress conditioning (MSC) (wilting for ≈2 hours per day); undisturbed ebb-and-flow irrigation; overhead irrigation; high (500 mg·L-1 N) or low (50 mg·L-1 N) 3×/week N fertilizer regimes; daminozide (5000 mg·L-1); or paclobutrazol (30, 45, or 180 mg·L-1). One week after initiation of treatments, individual plants in separate greenhouses were inoculated with two adult green peach aphids (Myzus persicae Sulzer) or five two-spotted spider mites (Tetranychus urticae Koch). A natural infestation of western flower thrips (Frankliniella occidentalis Pergande) in the mite-inoculated greenhouse provided an additional insect treatment. Brushing was the only treatment that consistently reduced thrips and mite populations. Aphid populations were lower on low-N than on high-N plants, but thrips and mite populations were not consistently affected by plant fertilization. Moisture stress conditioning tended to increase aphid populations on New Guinea impatiens and marigold, but had little effect on spider mite or thrips populations. Ebb-and-flow irrigation reduced the mite population on ageratum relative to that on overhead irrigated (control) plants. Plant growth regulators did not consistently affect pest populations. Chemical names used: butane-dioic acid mono(2,2-dimethylhydrazide) (daminozide); β-[(4-chlorophenyl)methyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-1-ethanol (paclobutrazol).

HortScience ◽  
1994 ◽  
Vol 29 (11) ◽  
pp. 1279-1281 ◽  
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

`Sunny' tomato (Lycopersicon esculentum Mill.), `Black Beauty' eggplant (Solanum melongena var. esculentum L. Nees.), or `Sugar Baby' watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] were nontreated, subjected to brushing (20 strokes twice daily) or drought conditioning (2 hours daily wilt), or maintained undisturbed using ebb-and-flow irrigation. One week after brushing or drought conditioning, plants were inoculated with western flower thrips (Frankliniella occidentalis Pergande) or green peach aphid (Myzus persicae Sulzer). Brushing and drought conditioning reduced plant height and shoot dry weight of all crops. Brushing of all three species generally reduced the number of thrips, as indicated by number of feeding scars or percent leaf area damaged. Drought conditioning did not affect thrips populations consistently. Undisturbed plants grown with ebb-and-flow irrigation exhibited the greatest damage from thrips. Brushing reduced the number of aphids on tomato relative to the nontreated controls. Drought did not reduce aphid populations consistently on any crop. Brushing for height control may be advantageous in an integrated pest-management program to control aphids and thrips.


1997 ◽  
Vol 122 (6) ◽  
pp. 788-791 ◽  
Author(s):  
Joyce G. Latimer ◽  
Ray F. Severson

Epicuticular waxes were analyzed to explain the visible differences in the waxy bloom of conditioned broccoli (Brassica oleracea L. Group Italica `Green Duke') transplants. Seedlings (22 days old) were subjected to brushing (40 cycles per minute, 1 minute twice daily), wind (7 m·s-1 for 5 minutes twice daily), or moisture-stress conditioning (MSC; visible wilt for 2 to 4 hours daily) for 16 (1987) or 21 (1988) days during transplant production in the greenhouse. The epicuticular waxes of the uppermost fully expanded leaves were removed by dipping detached leaves into methylene chloride. The extract was derivatized with trimethylsilyl reagents and subjected to capillary gas chromatography. The primary epicuticular wax components were the nonpolar C29 compounds nonacosane, nonacosan-15-ol, and nonacosan-15-one, which were identified by mass spectrometry. In a Summer 1987 experiment, cuticle samples taken over time of treatment indicated acclimation to the conditioning treatments relative to untreated plants. After 9 days of treatment, the amount of total epicuticular waxes present on the leaves was reduced 38%, 31%, or 11% by wind, brushing, or MSC, respectively. However, after 15 days of treatment, the amount of cuticle present was reduced 15% by brushing but only 6% by wind and was 17% greater in MSC-treated plants. Two weeks after transplanting to the field there were no differences in the amount or composition of the epicuticular waxes. In Fall 1988, all treatments reduced plant growth, but only MSC tended to increase the amount of C29 epicuticular components during greenhouse production. Differences in the amounts of epicuticular waxes were no longer significant after 8 days in the field.


2019 ◽  
Vol 112 (5) ◽  
pp. 2085-2093
Author(s):  
Yinping Li ◽  
Raymond A Cloyd ◽  
Nora M Bello

Abstract Western flower thrips, Frankliniella occidentalis (Pergande), is a destructive insect pest in greenhouse production systems. Therefore, integrating the entomopathogenic fungus, Beauveria bassiana (Balsamo) Vuillemin, with the soil-dwelling rove beetle, Dalotia coriaria (Kraatz), targeting different aboveground and belowground life stages may help effectively manage western flower thrips populations. Two greenhouse experiments were conducted evaluating five treatments: 1) insecticides (spinosad, pyridalyl, chlorfenapyr, and abamectin), 2) B. bassiana, 3) D. coriaria, 4) B. bassiana and D. coriaria combination, and 5) water control. The estimated mean number of western flower thrips adults captured on yellow sticky cards was significantly lower for the insecticide treatment (mean range: 0–46 western flower thrips adults per yellow sticky card) than the B. bassiana and D. coriaria combination (0.3–105.1 western flower thrips per yellow card) over 8 wk. There were no significant differences in the final foliar damage ratings of chrysanthemum, Dendranthema × grandiflorum (Ramat.) Kitam., plants among the five treatments in experiment 1, but there were significant differences in experiment 2. In experiment 2, chrysanthemum plants across all treatments were not marketable due to western flower thrips feeding damage. Therefore, using B. bassiana and D. coriaria early in production should suppress population growth by targeting both foliar-feeding and soil-dwelling life stages of western flower thrips simultaneously.


1998 ◽  
Vol 16 (3) ◽  
pp. 138-142
Author(s):  
Joyce G. Latimer ◽  
Ronald D. Oetting

Abstract Conditioning treatments were evaluated for effects on growth of bedding plants during greenhouse production and carryover effects on plant performance in the landscape. Treatments included two fertilization regimes using a complete water soluble fertilizer applied three times/week at 500 ppm N, designated ‘high N’, or at 50 ppm N, designated the ‘low N’ treatment. Other treatments included: ebb and flow irrigation, drought stress for up to 2 h wilt/day, 5000 ppm B-Nine (daminozide), 45 ppm Bonzi (paclobutrazol; 180 ppm on columbine), and brushing (40 strokes twice daily). Unless otherwise noted all plants, including controls, were maintained well-irrigated and fertilized with 250 ppm N three times/week. Marigolds and New Guinea impatiens grown under low N during greenhouse production exhibited reduced plant height and width relative to control plants at 4 weeks after planting (WAP) in the landscape. Plant quality ratings of all species conditioned with low N were lower than those of controls 2 and 4 WAP. Plant height of New Guinea impatiens conditioned with high N was greater than that of controls 4 WAP in the landscape. Marigolds subjected to drought in the greenhouse were still shorter than controls 2 and 4 WAP. Persistent height reductions in the landscape in response to B-Nine were observed in ageratum 2 and 4 WAP and to Bonzi in New Guinea impatiens through 8 WAP. Brushing reduced the height of all species except ageratum in the greenhouse, but had no carryover effect on plant growth in the landscape. At 4 weeks after treatment, plant height of columbine treated with low or high N, drought, brushing, or B-Nine was reduced relative to controls, but all plants were similar in size in the landscape.


2018 ◽  
Vol 19 (4) ◽  
pp. 324-328
Author(s):  
W. Garrett Owen ◽  
Brian E. Whipker ◽  
Josh B. Henry ◽  
Paul Cockson ◽  
Hunter Landis

New Guinea impatiens (Impatiens hawkeri) are popular bedding plants, but the knowledge of diagnosing abiotic disorders during greenhouse production is evolving. Symptomology of nutrient deficiencies and excessive fertilization have been extensively documented. Exact symptomology of low substrate pH (<5.5) and toxic iron (Fe) and/or manganese (Mn) leaf tissue levels are not defined or photographed, thereby aiding in diagnosis. Therefore, the objective of the diagnostic guide was to photograph symptomology and document the tissue levels in New Guinea impatiens to provide a definitive guide of low substrate pH–induced Fe and/or Mn toxicity.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1384
Author(s):  
Dinar S. C. Wahyuni ◽  
Young Hae Choi ◽  
Kirsten A. Leiss ◽  
Peter G. L. Klinkhamer

Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 392
Author(s):  
Amalendu Ghosh ◽  
Priti ◽  
Bikash Mandal ◽  
Ralf G. Dietzgen

Thrips are important pests of agricultural, horticultural, and forest crops worldwide. In addition to direct damages caused by feeding, several thrips species can transmit diverse tospoviruses. The present understanding of thrips–tospovirus relationships is largely based on studies of tomato spotted wilt virus (TSWV) and Western flower thrips (Frankliniella occidentalis). Little is known about other predominant tospoviruses and their thrips vectors. In this study, we report the progression of watermelon bud necrosis virus (WBNV) infection in its vector, melon thrips (Thrips palmi). Virus infection was visualized in different life stages of thrips using WBNV-nucleocapsid protein antibodies detected with FITC-conjugated secondary antibodies. The anterior midgut was the first to be infected with WBNV in the first instar larvae. The midgut of T. palmi was connected to the principal salivary glands (PSG) via ligaments and the tubular salivary glands (TSG). The infection progressed to the PSG primarily through the connecting ligaments during early larval instars. The TSG may also have an ancillary role in disseminating WBNV from the midgut to PSG in older instars of T. palmi. Infection of WBNV was also spread to the Malpighian tubules, hindgut, and posterior portion of the foregut during the adult stage. Maximum virus-specific fluorescence in the anterior midgut and PSG indicated the primary sites for WBNV replication. These findings will help to better understand the thrips–tospovirus molecular relationships and identify novel potential targets for their management. To our knowledge, this is the first report of the WBNV dissemination path in its vector, T. palmi.


2008 ◽  
Vol 98 (4) ◽  
pp. 355-359 ◽  
Author(s):  
P. Bielza ◽  
V. Quinto ◽  
C. Grávalos ◽  
E. Fernández ◽  
J. Abellán ◽  
...  

AbstractThe stability of spinosad resistance in western flower thrips (WFT),Frankliniella occidentalis(Pergande), populations with differing initial frequencies of resistance was studied in laboratory conditions. The stability of resistance was assessed in bimonthly residual bioassays in five populations with initial frequencies of 100, 75, 50, 25 and 0% of resistant individuals. There were no consistent changes in susceptibility of the susceptible strain after eight months without insecticide pressure. In the resistant strain, very highly resistant to spinosad (RF50>23,000-fold), resistance was maintained up to eight months without further exposure to spinosad. In the absence of any immigration of susceptible genes into the population, resistance was stable. In the case of the population with different initial frequency of resistant thrips, spinosad resistance declined significantly two months later in the absence of selection pressure. With successive generations, these strains did not change significantly in sensitivity. Spinosad resistance inF. occidentalisdeclined significantly in the absence of selection pressure and the presence of susceptible WFT. These results suggest that spinosad resistance probably is unstable under field conditions, primarily due to the immigration of susceptible WFT. Factors influencing stability or reversion of spinosad resistance are discussed.


Sign in / Sign up

Export Citation Format

Share Document