scholarly journals A Recombinant of Bean common mosaic virus Induces Temperature-Insensitive Necrosis in an I Gene-Bearing Line of Common Bean

2014 ◽  
Vol 104 (11) ◽  
pp. 1251-1257 ◽  
Author(s):  
Xue Feng ◽  
Alan R. Poplawsky ◽  
Alexander V. Karasev

The I gene is a single, dominant gene conferring temperature-sensitive resistance to all known strains of Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris). However, the closely related Bean common mosaic necrosis virus (BCMNV) induces whole plant necrosis in I-bearing genotypes of common bean, and the presence of additional, recessive genes is required to prevent this severe whole plant necrotic reaction caused by BCMNV. Almost all known BCMNV isolates have so far been classified as having pathotype VI based on their interactions with the five BCMV resistance genes, and all have a distinct serotype A. Here, we describe a new isolate of BCMV, RU1M, capable of inducing whole plant necrosis in the presence of the I gene, that appears to belong to pathotype VII and exhibits B-serotype. Unlike other isolates of BCMV, RU1M was able to induce severe whole plant necrosis below 30°C in bean cultivar Jubila that carries the I gene and a protective recessive gene bc-1. The whole genome of RU1M was cloned and sequenced and determined to be 9,953 nucleotides long excluding poly(A), coding for a single polyprotein of 3,186 amino acids. Most of the genome was found almost identical (>98%) to the BCMV isolate RU1-OR (also pathotype VII) that did not induce necrotic symptoms in ‘Jubila’. Inspection of the nucleotide sequences for BCMV isolates RU1-OR, RU1M, and US10 (all pathotype VII) and three closely related sequences of BCMV isolates RU1P, RU1D, and RU1W (all pathotype VI) revealed that RU1M is a product of recombination between RU1-OR and a yet unknown potyvirus. A 0.8-kb fragment of an unknown origin in the RU1M genome may have led to its ability to induce necrosis regardless of temperature in beans carrying the I gene. This is the first report of a BCMV isolate inducing temperature-insensitive necrosis in an I gene containing bean genotype.

1980 ◽  
Vol 95 (3) ◽  
pp. 619-630 ◽  
Author(s):  
N. L. Innes ◽  
D. G. A. Walkey

SUMMARYA high level of resistance to the bean common mosaic virus strains NL3 and NL4 when inoculated separately or together was confirmed in the cultivars Turkish Brown, Valja and 1750–73. Following crosses between the susceptible cv. The Prince and all three resistant cultivars, inoculation of F2 and F3 populations revealed that the cvs Turkish Brown and Valja each differed from The Prince in being homozygous for a major recessive gene conferring resistance to both NL3 and NL4. Homology tests indicated that the same gene was present in both Turkish Brown and Valja. Polygenes in Turkish Brown and Valja also appeared to confer some resistance to NL3, or environmental variation led to continuous distribution patterns in the F2's of resistant parents crossed with The Prince. Although a major recessive gene controlled resistance to NL3 in cv. 1750–73, it differed from that in the two other resistant cultivars. In addition, cv. 1750–73 carried a dominant gene determining reaction to the virus; probably the I gene originally found in Corbett Refugee. An attempt is made to relate these results to Drijfhout's (1978) gene-for-gene model. Using Drijfhout's gene nomenclature all the cultivars tested appear to carry the strain nonspecific gene bc-u. Further genetical tests will be necessary to determine with certainty which, if any, of Drijfhout's strain-specific resistant bc-genes are present in the three resistant cultivars studied here.


2007 ◽  
Vol 132 (4) ◽  
pp. 530-533 ◽  
Author(s):  
Juan M. Osorno ◽  
Carlos G. Muñoz ◽  
James S. Beaver ◽  
Feiko H. Ferwerda ◽  
Mark J. Bassett ◽  
...  

Bean golden yellow mosaic virus (BGYMV), incited by a whitefly (Bemisia tabaci Gennadius) transmitted geminivirus, is an important disease that can limit common bean (Phaseolus vulgaris L.) production in Central America, the Caribbean, and southern Florida. Only a few genes are currently deployed in BGYMV-resistant common bean cultivars. The identification of novel sources of resistance would help bean breeders broaden the genetic base of resistance to this important virus. Phaseolus coccineus L. germplasm accession G35172 was found by International Center for Tropical Agriculture scientists to be resistant to BGYMV. Populations derived from an interspecific cross between P. vulgaris and P. coccineus were evaluated to study the inheritance of resistance to BGYMV. Segregation ratios of F2 plants and other populations suggest that BGYMV resistance from P. coccineus is controlled by two genes. A recessive gene, with the proposed symbol bgm-3, confers resistance to leaf chlorosis and a dominant gene, with the proposed name Bgp-2, prevents pod deformation in the presence of BGYMV. Results from allelism tests with previously reported BGYMV resistance genes (bgm, bgm-2, and Bgp) and the absence of the SR-2 sequence-characterized amplified region marker for bgm support the hypothesis that bgm-3 and Bgp-2 are different genes for BGYMV resistance.


2018 ◽  
Vol 108 (8) ◽  
pp. 1011-1018 ◽  
Author(s):  
Xue Feng ◽  
Gardenia E. Orellana ◽  
James R. Myers ◽  
Alexander V. Karasev

Recessive resistance to Bean common mosaic virus (BCMV) in common bean (Phaseolus vulgaris) is governed by four genes that include one strain-nonspecific helper gene bc-u, and three strain-specific genes bc-1, bc-2, and bc-3. The bc-3 gene was identified as an eIF4E translation initiation factor gene mediating resistance through disruption of the interaction between this protein and the VPg protein of the virus. The mode of action of bc-1 and bc-2 in expression of BCMV resistance is unknown, although bc-1 gene was found to affect systemic spread of a related potyvirus, Bean common mosaic necrosis virus. To investigate the possible role of both bc-1 and bc-2 genes in replication, cell-to-cell, and long-distance movement of BCMV in P. vulgaris, we tested virus spread of eight BCMV isolates representing pathogroups I, IV, VI, VII, and VIII in a set of bean differentials expressing different combinations of six resistance alleles including bc-u, bc-1, bc-12, bc-2, bc-22, and bc-3. All studied BCMV isolates were able to replicate and spread in inoculated leaves of bean cultivars harboring bc-u, bc-1, bc-12, bc-2, and bc-22 alleles and their combinations, while no BCMV replication was found in inoculated leaves of cultivar IVT7214 carrying the bc-u, bc-2, and bc-3 genes, except for isolate 1755a, which was capable of overcoming the resistance conferred by bc-2 and bc-3. In contrast, the systemic spread of all BCMV isolates from pathogroups I, IV, VI, VII, and VIII was impaired in common bean cultivars carrying bc-1, bc-12, bc-2, and bc-22 alleles. The data suggest that bc-1 and bc-2 recessive resistance genes have no effect on the replication and cell-to-cell movement of BCMV, but affect systemic spread of BCMV in common bean. The BCMV resistance conferred by bc-1 and bc-2 and affecting systemic spread was found only partially effective when these two genes were expressed singly. The efficiency of the restriction of the systemic spread of the virus was greatly enhanced when the alleles of bc-1 and bc-2 genes were combined together.


1993 ◽  
Vol 73 (3) ◽  
pp. 785-793 ◽  
Author(s):  
Shree P. Singh ◽  
Albeiro Molina ◽  
Carlos A. Urrea ◽  
J. Ariel Gutiérrez

Recently, interracial hybridization was used successfully in breeding common bean (Phaseolus vulgaris L.), but its use has not been adequately documented. Approximately 125 lines with medium-sized seed were selected in the first cycle, mostly from race Durango × race Mesoamerica (both from the Middle American domestication center) single- and multiple-cross populations, for disease resistance and race Durango characteristics. Fifteen of these improved lines, three race Durango control cultivars, and one control cultivar each from races Jalisco and Mesoamerica were evaluated for 3 yr (1989–1991) at three locations in Colombia. A randomized complete block design with three replications was used. Lines were developed using visual mass selection for seed yield and/or resistance to diseases in F2 and F3, followed by single plant harvests in F4 or F5 and seed increases in F6 or F7. Lines resistant to bean common mosaic virus and possessing other desirable traits were yield-tested in F7 or F8. All but two lines outyielded Alteño and Flor de Mayo, the highest yielding control cultivars from races Durango and Jalisco, respectively. Two lines also outyielded Carioca, the race Mesoamerica control cultivar. Improved lines tended to possess higher yield per day. All lines were resistant to bean common mosaic virus and most lines also carried a high level of resistance to anthracnose. Plant, seed, and maturity characteristics of most improved lines were similar to those of race Durango control cultivars. These results support the use of interracial hybridization in improving race Durango common bean. Key words: Common bean, Phaseolus vulgaris, race Durango, interracial populations, seed yield, disease resistance


2014 ◽  
Vol 104 (7) ◽  
pp. 786-793 ◽  
Author(s):  
Xue Feng ◽  
Alan R. Poplawsky ◽  
Olga V. Nikolaeva ◽  
James R. Myers ◽  
Alexander V. Karasev

Bean common mosaic virus (BCMV) exists as a complex of strains classified by reactions to resistance genes found in common bean (Phaseolus vulgaris); seven BCMV pathotypes have been distinguished thus far, numbered I to VII. Virus genetic determinants involved in pathogenicity interactions with resistance genes have not yet been identified. Here, we describe the characterization of two novel field isolates of BCMV that helped to narrow down these genetic determinants interacting with specific P. vulgaris resistance factors. Based on a biological characterization on common bean differentials, both isolates were classified as belonging to pathotype VII, similar to control isolate US10, and both isolates exhibited the B serotype. The whole genome was sequenced for both isolates and found to be 98 to 99% identical to the BCMV isolate RU1 (pathotype VI), and a single name was retained: BCMV RU1-OR. To identify a genetic determinant of BCMV linked to the BCMV pathotype VII, the whole genome was also sequenced for two control isolates, US10 and RU1-P. Inspection of the nucleotide sequences for BCMV RU1-OR and US10 (both pathotype VII) and three closely related sequences of BCMV (RU1-P, RU1-D, and RU1-W, all pathotype VI) revealed that RU1-OR originated through a series of recombination events between US10 and an as-yet-unidentified BCMV parental genome, resulting in changes in virus pathology. The data obtained suggest that a fragment of the RU1-OR genome between positions 723 and 1,961 nucleotides that is common to US10 and RU1-OR in the P1-HC-Pro region of the BCMV genome may be responsible for the ability to overcome resistance in bean conferred by the bc-22 gene. This is the first report of a virus genetic determinant responsible for overcoming a specific BCMV resistance gene in common bean.


BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 903 ◽  
Author(s):  
Marco H Bello ◽  
Samira M Moghaddam ◽  
Mark Massoudi ◽  
Phillip E McClean ◽  
Perry B Cregan ◽  
...  

2000 ◽  
Vol 13 (11) ◽  
pp. 1266-1270 ◽  
Author(s):  
Candace Whitmer Collmer ◽  
Marcia Fisher Marston ◽  
Jessica C. Taylor ◽  
Molly Jahn

The resistance to the potyvirus Bean common mosaic virus (BCMV) conferred by the I allele in cultivars of Phaseolus vulgaris has been characterized as dominant, and it has been associated with both immunity and a systemic vascular necrosis in infected bean plants under field, as well as controlled, conditions. In our attempts to understand more fully the nature of the interaction between bean with the I resistance allele and the pathogen BCMV, we carefully varied both I allele dosage and temperature and observed the resulting, varying resistance responses. We report here that the I allele in the bean cultivars we studied is not dominant, but rather incompletely dominant, and that the system can be manipulated to show in plants a continuum of response to BCMV that ranges from immunity or extreme resistance, to hypersensitive resistance, to systemic phloem necrosis (and subsequent plant death). We propose that the particular phenotypic outcome in bean results from a quantitative interaction between viral pathogen and plant host that can be altered to favor one or the other by manipulating I allele dosage, temperature, viral pathogen, or plant cultivar.


Genome ◽  
1996 ◽  
Vol 39 (6) ◽  
pp. 1216-1219 ◽  
Author(s):  
M. Melotto ◽  
L. Afanador ◽  
J. D. Kelly

Two 24-mer SCAR primers (SW13) were developed from a previously identified 10-mer RAPD primer (OW13690) linked to the I gene, which conditions resistance to bean common mosaic virus (BCMV) in common bean. Linkage between SW13 and the I gene was tested in three F2 populations segregating for both SW13 and the I gene: N84004/Michelite (1.0 ± 0.7 cM), Seafarer/UI-114 (1.3 ± 0.8 cM), and G91201/Alpine (5.0 ± 2.2 cM). SW13 proved to be more specific and reproducible than the OW13690 RAPD marker. Using different heat-stable DNA polymerases, SW13 amplified a single 690-bp fragment linked to the I gene that more consistently permitted the identification of resistant plants. In addition, the presence of the I gene was detected using SW13 in genotypes originating from different gene pools of Phaseolus vulgaris L., indicating a broad utility of this marker for bean breeding programs. Key words : Phaseolus vulgaris, SCAR, RAPD, BCMV.


2012 ◽  
Vol 160 (11-12) ◽  
pp. 710-716 ◽  
Author(s):  
Arakere C. Udayashankar ◽  
Chandra S. Nayaka ◽  
Basavaraju Archana ◽  
Usha Nayak ◽  
Siddapura R. Niranjana ◽  
...  

2015 ◽  
Vol 105 (11) ◽  
pp. 1487-1495 ◽  
Author(s):  
Xue Feng ◽  
James R. Myers ◽  
Alexander V. Karasev

Resistance against Bean common mosaic virus (BCMV) in Phaseolus vulgaris is governed by six recessive resistance alleles at four loci. One of these alleles, bc-3, is able to protect P. vulgaris against all BCMV strains and against other potyviruses; bc-3 was identified as the eIF4E allele carrying mutated eukaryotic translation initiation factor gene. Here, we characterized a novel BCMV isolate 1755a that was able to overcome bc-2 and bc-3 alleles in common bean. Thus, it displayed a novel pattern of interactions with resistance genes in P. vulgaris, and was assigned to a new pathogroup, PG-VIII. The IVT7214 cultivar supporting the replication of BCMV-1755a was found to have the intact homozygous bc-3 cleaved amplified polymorphic sequences marker and corresponding mutations in the eIF4E allele that confer resistance to BCMV isolates from all other pathogroups as well as to other potyviruses. The VPg protein of 1755a had seven amino acid substitutions relative to VPgs of other BCMV isolates unable to overcome bc-3. The 1755a genome was found to be a recombinant between NL1, US1 (both PG-I), and a yet unknown BCMV strain. Analysis of the recombination patterns in the genomes of NL1 and US1 (PG-I), NY15P (PG-V), US10 and RU1-OR (PG-VII), and 1755a (PG-VIII), indicated that P1/HC-Pro cistrons of BCMV strains may interact with most resistance genes. This is the first report of a BCMV isolate able to overcome the bc-3 resistance allele, suggesting that the virus has evolved mechanisms to overcome multiple resistance genes available in common bean.


Sign in / Sign up

Export Citation Format

Share Document