scholarly journals Cercospora zeina from Maize in South Africa Exhibits High Genetic Diversity and Lack of Regional Population Differentiation

2016 ◽  
Vol 106 (10) ◽  
pp. 1194-1205 ◽  
Author(s):  
Mischa F. Muller ◽  
Irene Barnes ◽  
Ncobile T. Kunene ◽  
Bridget G. Crampton ◽  
Burton H. Bluhm ◽  
...  

South Africa is one of the leading maize-producing countries in sub-Saharan Africa. Since the 1980s, Cercospora zeina, a causal agent of gray leaf spot of maize, has become endemic in South Africa, and is responsible for substantial yield reductions. To assess genetic diversity and population structure of C. zeina in South Africa, 369 isolates were collected from commercial maize farms in three provinces (KwaZulu-Natal, Mpumalanga, and North West). These isolates were evaluated with 14 microsatellite markers and species-specific mating type markers that were designed from draft genome sequences of C. zeina isolates from Africa (CMW 25467) and the United States (USPA-4). Sixty alleles were identified across 14 loci, and gene diversity values within each province ranged from 0.18 to 0.35. High levels of gene flow were observed (Nm = 5.51), and in a few cases, identical multilocus haplotypes were found in different provinces. Overall, 242 unique multilocus haplotypes were identified with a low clonal fraction of 34%. No distinct population clusters were identified using STRUCTURE, principal coordinate analysis, or Weir’s theta θ statistic. The lack of population differentiation was supported by analysis of molecular variance tests, which indicated that only 2% of the variation was attributed to variability between populations from each province. Mating type ratios of MAT1-1 and MAT1-2 idiomorphs from 335 isolates were not significantly different from a 1:1 ratio in all provinces, which provided evidence for sexual reproduction. The draft genome of C. zeina CMW 25467 exhibited a complete genomic copy of the MAT1-1 idiomorph as well as exonic fragments of MAT genes from both idiomorphs. The high level of gene diversity, shared haplotypes at different geographical locations within South Africa, and presence of both MAT idiomorphs at all sites indicates widespread dispersal of C. zeina between maize fields in the country as well as evidence for sexual recombination. The outcomes of this genome-enabled study are important for disease management since the high diversity has implications for dispersal of fungicide resistance should it emerge and the need for diversified resistance breeding.

Author(s):  
Hubrecht Ribbens

Road casualties are discussed from a worldwide perspective. More than 80% of annual traffic casualties occur in developing and emerging countries in Asia, Latin America, the Caribbean, sub-Saharan Africa, and the Middle East. Vulnerable road users such as pedestrians and bicyclists are a major road safety problem in these countries. In Asia, Africa, the Caribbean, and the Middle East, more than 40% of annual road fatalities involve pedestrians compared with less than 20% in Europe and the United States. The focus of this study is South Africa’s strategy to promote the safety of vulnerable road users. The extent of casualties among vulnerable road users and contributing factors are highlighted. Over the last decade, pedestrian fatalities have gradually and steadily declined in South Africa. This study describes the various policies, strategies, and action plans developed and implemented by different government levels in South Africa to promote road traffic safety, particularly the safety of vulnerable road users such as pedestrians and bicyclists. Barriers to successful implementation are also pointed out. Apart from applying a holistic approach by involving all relevant disciplines, a coordinated and sustained effort of all government levels was encouraged. Joint-venture funding projects among different government levels was emphasized to improve hazardous pedestrian locations. The role of the private sector in South Africa to promote pedestrian safety is also discussed. Practical guidelines are presented for developing and emerging countries to promote the safety of vulnerable road users.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Runzhi Li ◽  
Shiwen Wang ◽  
Liusheng Duan ◽  
Zhaohu Li ◽  
Michael J. Christoffers ◽  
...  

Weed genetic diversity is important for understanding the ability of weeds to adapt to different environments and the impact of herbicide selection on weed populations. Genetic diversity within and among six wild oat populations in China varying in herbicide selection pressure and one population in North Dakota were surveyed using 64 polymorphic alleles resulting from 25 microsatellite loci. Mean Nei's gene diversity (h) for six wild oat populations from China was between 0.17 and 0.21, and total diversity (HT) was 0.23. A greater proportion of this diversity, however, was within (Hs= 0.19) rather than among (Gst= 0.15) populations. For the wild oat population from the United States,h= 0.24 andHT= 0.24 were comparable to the values for the six populations from China. Cluster analysis divided the seven populations into two groups, where one group was the United States population and the other group included the six Chinese populations. The genetic relationships among six populations from China were weakly correlated with their geographic distribution (r= 0.22) using the Mantel test. Minimal difference in gene diversity and small genetic distance (Nei's distance 0.07 or less) among six populations from China are consistent with wide dispersal of wild oat in the 1980s. Our results indicate that the wild oat populations in China are genetically diverse at a level similar to North America, and the genetic diversity of wild oat in the broad spatial scale is not substantially changed by environment, agronomic practices, or herbicide usage.


2000 ◽  
Vol 90 (10) ◽  
pp. 1126-1130 ◽  
Author(s):  
Paul W. Tooley ◽  
Nichole R. O'Neill ◽  
Erin D. Goley ◽  
Marie M. Carras

Genetic diversity among isolates of Claviceps africana, the sorghum ergot pathogen, and isolates of other Claviceps spp. causing ergot on sorghum or other hosts, was analyzed by random amplified microsatellite (RAM) and amplified fragment length polymorphism (AFLP) analyses. Of the RAM primer sets tested, one revealed polymorphism in C. africana isolates, with Australian and Indian isolates possessing a unique fragment. AFLP analysis, in addition to clearly distinguishing Claviceps spp., revealed polymorphisms in C. africana. A group of isolates from the United States, Puerto Rico, and South Africa exhibited 95 to 100% similarity with one another. Several isolates from Isabela, Puerto Rico were 100% similar to an isolate from Texas, and another isolate from Puerto Rico was identical with one from Nebraska. Australian and Indian isolates showed greater than 90% similarity with isolates from the United States., Puerto Rico, and South Africa. A number of polymorphisms existed in the United States group, indicating that the recently introduced population contains multiple genotypes. Isolates of C. sorghicola, a newly described sorghum pathogen from Japan, were very distinct from other species via RAM and AFLP analyses, as were isolates from outgroups C. purpurea and C. fusiformis. Both RAM and AFLP analysis will be useful in determining future patterns of intercontinental migration of the sorghum ergot pathogen, with the AFLP method showing greater ability to characterize levels of intraspecific variation.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 998A-998 ◽  
Author(s):  
Jinggui Fang ◽  
Panchanoor S. Devanand ◽  
Chih Cheng T. Chao ◽  
Philip A. Roberts ◽  
Jeff D. Ehlers

Cowpea (2n=2x=22) is a high protein, short-cycle, and essential legume food crop of the tropics, especially in the low input agricultural areas of sub-Saharan Africa, Asia, and South America. Lack of genetic diversity within breeding programs can limit long-term gains from selection. The cowpea gene pool is thought to be narrow and the genetic diversity within breeding programs could be even less diverse. Genetic relationships among 87 cowpea accessions, including 60 advanced breeding lines from six breeding programs in Africa and the United States, and 27 accessions from Africa, Asia, and South America were examined using amplified fragment length polymorphism (AFLP) markers with six near-infrared fluorescence labeled EcoR I + 3/Mse I + 3 primer sets. A total of 382 bands were scored among the accessions with 207 polymorphic bands (54.2%). Overall, the 87 cowpea accessions have narrow genetic basis and they shared minimum 86% genetic similarities. The data also show that the advanced breeding lines of different programs have higher genetic affinities with lines from the same program but not with lines from other programs. The results suggest that there is a need to incorporate additional germplasm of different genetic background into these breeding lines and to ensure the long-term genetic gains of the programs.


2020 ◽  
Author(s):  
Lori Ann Post ◽  
Salem T Argaw ◽  
Cameron Jones ◽  
Charles B Moss ◽  
Danielle Resnick ◽  
...  

BACKGROUND Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent’s poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus’s impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. OBJECTIVE The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. METHODS We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the <i>speed</i>, <i>acceleration</i>, <i>jerk</i>, <i>and 7-day persistence</i> indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a <i>jerk</i>. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. CONCLUSIONS Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts. INTERNATIONAL REGISTERED REPORT RR2-10.2196/21955


Plant Disease ◽  
2019 ◽  
Vol 103 (7) ◽  
pp. 1487-1497 ◽  
Author(s):  
Lori B. Koenick ◽  
Niloofar Vaghefi ◽  
Noel L. Knight ◽  
Lindsey J. du Toit ◽  
Sarah J. Pethybridge

Phoma betae is an important seedborne pathogen of table beet worldwide that is capable of causing foliar, root, and damping-off diseases. Ten microsatellite and mating type markers were developed to investigate the genetics of P. betae populations in table beet root crops in New York and in table beet seed crops in Washington, from where table beet seed is predominantly sourced. The markers were used to characterize 175 isolates comprising five P. betae populations (two from New York and three from Washington), and they were highly polymorphic with an allelic range of 4 to 33 and an average of 11.7 alleles per locus. All populations had high genotypic diversity (Simpson’s complement index = 0.857 to 0.924) and moderate allelic diversity (Nei’s unbiased gene diversity = 0.582 to 0.653). Greater differentiation observed between populations from the two states compared with populations within the same state suggested that an external inoculum source, such as windblown ascospores, may be homogenizing the populations. However, most genetic diversity (87%) was among individual isolates within populations (pairwise index of population differentiation = 0.127; P = 0.001), suggesting that local within-field inoculum source(s), such as infested field debris or infected weeds, may also be important in initiating disease outbreaks. Standardized index of association, proportion of compatible pairs of loci, and mating type ratio calculations showed evidence for a mixed reproduction mode in all populations. These findings could be useful in designing more effective management strategies for diseases caused by P. betae in table beet production.


Plant Disease ◽  
2014 ◽  
Vol 98 (7) ◽  
pp. 916-923 ◽  
Author(s):  
C. H. Bock ◽  
B. W. Wood ◽  
K. L. Stevenson ◽  
R. S. Arias

Fusicladium effusum causes pecan scab, which is the most destructive disease of pecan orchards in the United States. Conidia of the pathogen are spread by rain splash and wind. The fungus is pathogenically diverse; yet there is no information on its genetic diversity or population genetics. Universally primed polymerase chain reaction (UP-PCR) was used to investigate the genetic diversity and population structure on a hierarchical sample of 194 isolates collected from 11 orchard locations from Florida to Texas, consisting of three to four isolates from each of five to six trees at each location. Genetic variation was high throughout the region, with all but nine of the multilocus haplotypes being unique. Nei's average gene diversity ranged from 0.083 for a population from Mississippi to 0.160 for a population from Kansas. An analysis of molecular variance of the hierarchically sampled populations found that the majority of the genetic variability (82.6%) occurred at the scale of the individual tree and only relatively small amounts among populations in trees from an orchard (5.0%) or within groups (i.e., orchard location populations) (12.5%). The results suggest little population differentiation in F. effusum in the southeastern United States, although φpt values of genetic distance for pairwise comparisons indicated some populations could be differentiated from others. There was evidence of linkage disequilibrium in certain populations, and the common occurrence of asexual reproduction in F. effusum could lead to measurable linkage disequilibrium under certain circumstances. However, the degree of genetic diversity and the scale over which diversity is distributed is evidence that F. effusum undergoes regular recombination despite no known sexual stage.


2019 ◽  
Vol 20 (9) ◽  
Author(s):  
Agus Nuryanto ◽  
NUNUNG KOMALAWATI ◽  
SUGIHARTO

Abstract. Nuryanto A, Komalawati N, Sugiharto. 2019. Genetic diversity assessment of Hemibagrus nemurus from rivers in Java Island, Indonesia using COI gene. Biodiversitas 20: 2707-2717. Green catfish (Hemibagrus nemurus) is a popular freshwater fish that highly exploited in almost all the rivers in Java Island. The exploited population tends to have low genetic diversity. Meanwhile, separated populations might lead to a genetic difference among the river populations. This study aims to investigate the genetic diversity and population variation of H. nemurus collected at eleven rivers across Java Island. The analysis based on 465 bp fragment of the cytochrome c oxidase 1 gene from 140 individuals. Analysis of overall populations proved that H. nemurus had a high gene diversity (h= 0.935±0.016) and nucleotide diversity (π = 0.073±0.036). Within population analysis also showed that H. nemurus populations showed high levels of gene diversity (h= 0.338±0.128 to 1.000±0.022) and nucleotide diversity (π =0.001±0.001 to 0.071±0.038). Those diversity values indicated that H. nemurus had high level of genetic diversity, except for the Citanduy population. Population comparison showed that significant genetic differences observed among populations (p= 0.000 for both variance component and Fst-value). However, pairwise comparison analysis indicated complex pattern of population differentiation. The high genetic diversity and complex pattern of population differentiation have important implication for H. nemurus conservation in Java Island.


2021 ◽  
pp. 000203972110525
Author(s):  
Yonatan N. Gez ◽  
Nadia Beider ◽  
Helga Dickow

Sub-Saharan African societies are widely seen as highly religious. However, at least 30 million Sub-Saharan Africans identify themselves as “religious nones” and are supposedly not affiliated with any religious tradition. While research interest in religious nones has been growing in the United States, Canada, and Western Europe, there is a dearth of literature on nones in Sub-Saharan Africa. In this paper, we offer an overview of this understudied subject and dwell on key challenges for studying African nones, including preconceived notions and structural oppositions. We further muse on the identity of African nones and consider differences from the characteristics established concerning Western nones. The article draws on quantitative data from across the region (primarily from Afrobarometer and Pew Research Center) and supplements them with interview data collected in Chad, Kenya, and South Africa.


10.2196/24248 ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. e24248
Author(s):  
Lori Ann Post ◽  
Salem T Argaw ◽  
Cameron Jones ◽  
Charles B Moss ◽  
Danielle Resnick ◽  
...  

Background Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent’s poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus’s impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. Objective The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. Methods We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. Results Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. Conclusions Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts. International Registered Report Identifier (IRRID) RR2-10.2196/21955


Sign in / Sign up

Export Citation Format

Share Document