scholarly journals Effect of Temperature on Growth and Sporulation of US-22, US-23, and US-24 Clonal Lineages of Phytophthora infestans and Implications for Late Blight Epidemiology

2015 ◽  
Vol 105 (4) ◽  
pp. 449-459 ◽  
Author(s):  
Anna C. Seidl Johnson ◽  
Kenneth E. Frost ◽  
Douglas I. Rouse ◽  
Amanda J. Gevens

Epidemics of late blight, caused by Phytophthora infestans (Mont.) de Bary, have been studied by plant pathologists and regarded with great concern by potato and tomato growers since the Irish potato famine in the 1840s. P. infestans populations have continued to evolve, with unique clonal lineages arising which differ in pathogen fitness and pathogenicity, potentially impacting epidemiology. In 2012 and 2013, the US-23 clonal lineage predominated late blight epidemics in most U.S. potato and tomato production regions, including Wisconsin. This lineage was unknown prior to 2009. For isolates of three recently identified clonal lineages of P. infestans (US-22, US-23, and US-24), sporulation rates were experimentally determined on potato and tomato foliage and the effect of temperature on lesion growth rate on tomato was investigated. The US-22 and US-23 isolates had greater lesion growth rates on tomato than US-24 isolates. Sporulation rates for all isolates were greater on potato than tomato, and the US-23 isolates had greater sporulation rates on both tomato and potato than the US-22 and US-24 isolates. Experimentally determined correlates of fitness were input to the LATEBLIGHT model and epidemics were simulated using archived Wisconsin weather data from four growing seasons (2009 to 2012) to investigate the effect of isolates of these new lineages on late blight epidemiology. The fast lesion growth rates of US-22 and US-23 isolates resulted in severe epidemics in all years tested, particularly in 2011. The greater sporulation rates of P. infestans on potato resulted in simulated epidemics that progressed faster than epidemics simulated for tomato; the high sporulation rates of US-23 isolates resulted in simulated epidemics more severe than simulated epidemics of isolates of the US-22 and US-24 isolates and EC-1 clonal lineages on potato and tomato. Additionally, US-23 isolates consistently caused severe simulated epidemics when lesion growth rate and sporulation were input into the model singly or together. Sporangial size of the US-23 isolates was significantly smaller than that of US-22 and US-24 isolates, which may result in more efficient release of sporangia from the tomato or potato canopy. Our experimentally determined correlates of fitness and the simulated epidemics resulting from their incorporation into the LATEBLIGHT model suggest that US-23 isolates of P. infestans may have the greatest fitness among currently prevalent lineages and may be the most likely lineage to persist in the P. infestans population. The US-23 clonal lineage has been documented as the most prevalent lineage in recent years, indicating its overall fitness. In our work, US-23 had the highest epidemic potential among current genotypes. Given that epidemic potential is a component of fitness, this may, in part, explain the current predominance of the US-23 lineage.

2018 ◽  
Author(s):  
Guohong Cai ◽  
Kevin Myers ◽  
William E. Fry ◽  
Bradley I. Hillman

AbstractPhytophthora infestansis the causal agent of potato and tomato late blight. In this study, we characterized a novel RNA virus, Phytophthora infestans RNA virus 2 (PiRV-2). The PiRV-2 genome is 11,170 nt and lacks a polyA tail. It contains a single large open reading frame (ORF) with short 5’- and 3’-untranslated regions. The ORF is predicted to encode a polyprotein of 3710 aa (calculated molecular weight 410.94 kDa). This virus lacks significant similarity to any other known viruses, even in the conserved RNA-dependent RNA polymerase region. Comparing isogenic strains with or without the virus demonstrated that the virus stimulated sporangia production inP. infestansand appeared to enhance its virulence. Transcriptome analysis revealed that it achieved sporulation stimulation likely through down-regulation of ammonium and amino acid intake inP. infestans. This virus was faithfully transmitted through asexual reproduction. Survey of PiRV-2 presence in aP. infestanscollection found it in most strains in the US-8 lineage, a very successful clonal lineage ofP. infestansin North America. We suggest that PiRV-2 may have contributed to its success, raising the intriguing possibility that a potentially hypervirulent virus may contribute to late blight epidemics.Author SummaryPotato late blight, the notorious plant disease behind the Irish Potato Famine, continues to pose a serious threat to potato and tomato production worldwide. While most studies on late blight epidemics focuses on pathogen virulence, host resistance, environmental factors and fungicide resistance, we present evidence in this study that a virus infecting the causal agent,Phytophthora infestans, may have played a role. We characterized a novel RNA virus, Phytophthora infestans RNA virus 2 (PiRV-2) and examined its effects on its host. By comparing identicalP. infestansstrains except with or without the virus, we found that PiRV-2 stimulated sporulation ofP. infestans(a critical factor in late blight epidemics) and increased its virulence. We also profiled gene expression in these strains and identified potential molecular mechanisms through which PiRV-2 asserted its sporulation stimulation effect. In a survey of PiRV-2 presence in aP. infestanscollection, we found PiRV-2 in most isolates of the US-8 clonal lineage, a very successfull ineage that dominated potato fields in North America for several decades. We suggest that PiRV-2 may have contributed to its success. Our findings raise the intriguing possibility that a potentially hypervirulent virus may contribute to late blight epidemics.


Plant Disease ◽  
2016 ◽  
Vol 100 (1) ◽  
pp. 180-187 ◽  
Author(s):  
Kenneth E. Frost ◽  
Anna C. Seidl Johnson ◽  
Amanda J. Gevens

Survival of Phytophthora infestans, causal agent of potato and tomato late blight, is thought to be negligible when exposed to freezing conditions typical of a Wisconsin winter. However, the persistence of relatively new P. infestans clonal lineages US-22, US-23, and US-24 within a production region during 2010 to 2014 warranted further investigation. We used tomato seed as a culture medium to determine the survival of P. infestans isolates representing the three lineages under temperatures of 18, 4, 0, −3, and −5°C for 11 time points (1 to 112 days postincubation). Survival varied interactively with temperature, duration of time at a temperature, and clonal lineage of the P. infestans isolate. US-22, -23, and -24 isolates survived for 112 days at 18 and 4°C, 84 days at 0°C, and 14 days at −3°C. US-23 survived longer at −3 and −5°C than did US-22 or US-24. The vigor of US-22 and US-24 isolates decreased with increasing exposure to cold temperatures, a trend that was not observed for the US-23 isolate. By calculating the length of time needed to kill the lineage isolates on infested tomato seed at five temperatures, we predicted that P. infestans would survive in 5% of tomato seed for 99, 25, and 16 days at 0, −3, and −5°C, respectively. We further applied a degree-day model to our empirical data to describe P. infestans survival as a function of cooling degree-day accumulations using archived soil temperatures at 5- and 10-cm depths at four Wisconsin locations over 27 years. The model indicated that survival of P. infestans in 5% of infested tomato seed would occur at 35 and 39% of the location–year combinations at 5- and 10-cm soil depths, respectively. Together, these data suggested that P. infestans has the potential to survive over the winter season by asexual means in infested tomato seed in Wisconsin and other Northern latitudes. Our cooling degree-day model for late blight in the tomato production system offers a tool for anticipating and mitigating disease based on integrated pest management concepts previously utilized for insects.


Plant Disease ◽  
2013 ◽  
Vol 97 (1) ◽  
pp. 152-152 ◽  
Author(s):  
A. J. Gevens ◽  
A. C. Seidl

Potato (Solanum tuberosum) crops are grown on over 25,090 ha in Wisconsin annually. Late blight, caused by Phytophthora infestans (Mont.) deBary, is a potentially devastating disease that affects tomato and potato crops in Wisconsin every few years when inoculum is introduced and weather conditions favor disease. Incidence and severity of late blight are highly variable in these few years due to differences in pathogen clonal lineages, their timing and means of introduction, and weather conditions. Prevention of this disease through prophylactic fungicide application can cost producers millions of dollars annually in additional chemical, fuel, and labor expenses. Populations of P. infestans in the U.S. have recently undergone significant genetic change, resulting in isolates with unique clonal lineages and epidemiological characteristics (1). In 2010, late blight epidemics were of low severity in discrete portions of a few fields and were seen exclusively on potato in two counties of central Wisconsin. Symptoms included water-soaked to dark brown circular lesions with pale green haloes accompanied by white fuzzy pathogen sporulation typically on leaf undersides in high humidity conditions. Infected plants were collected by professional crop consultants and submitted to the authors at the University of Wisconsin Vegetable Pathology Laboratory in Madison, Wisconsin. Eight isolates of P. infestans were generated from individual leaf samples, representing separate fields, by removing sporangia from sporulating lesions and placing onto Rye A agar amended with rifampicin and ampicillin. Axenic, single zoospore-derived cultures of isolates were generated from parent cultures and maintained on Rye A agar for further characterization. Mycelium was coenocytic with hyphal diameter of 5 to 8 μm (n = 50). Sporangia were limoniform to ovoid, semi- to fully papillate, caducous, had short pedicels, and were 36.22 × 19.11 μm (height × width; n = 50). The average length-width ratio was 1.91. Allozyme banding patterns at the glucose-6-phosphate isomerase (Gpi) locus indicated a 100/100/111 profile, consistent with the US-24 clonal lineage (3,4). Mating type assays confirmed the isolates to be A1 and intermediate insensitivity to mefenoxam was observed in vitro (4). Genomic DNA was extracted with a phenol:chloroform:isoamyl alcohol solution and restriction fragment length polymorphism (RFLP) analysis was performed using the RG-57 probe on a representative isolate and resulted in banding patterns consistent with US-24 (2,3). Clonal lineages of P. infestans documented in Wisconsin in previous epidemics included US-8 in the mid-1990s and US-1 in the 1970s. The US-24 (A1) clonal lineage was very widespread in the U.S. in 2010 and its presence in Wisconsin in the same year as identification of US-22 (A2) posed great concern for potential sexual recombination, oospore production, and soil persistence. Fortunately, the opposite mating types were separated spatiotemporally. To the best of our knowledge, this is the first report of the P. infestans clonal lineage US-24 causing late blight on potato in Wisconsin. References: (1) K. Deahl. (Abstr.) Phytopathology 100:S161, 2010. (2) S. B. Goodwin et al. Curr. Genet. 22:107, 1992. (3) Hu et al. Plant Dis. 96:1323, 2012. (4) A. C. Seidl and A. J. Gevens. (Abstr.) Phytopathology 101:S162, 2011.


Plant Disease ◽  
2015 ◽  
Vol 99 (3) ◽  
pp. 417-417 ◽  
Author(s):  
P. S. Wharton ◽  
P. Nolte ◽  
W. W. Kirk ◽  
S. Dangi ◽  
A. J. Gevens

Late blight, caused by Phytophthora infestans (Mont.) de Bary, is a destructive disease of potato (Solanum tuberosum) and tomato (S. lycopersicum) in the United States. Prior to 2007, the US-8 clonal lineage was the predominant genotype in the United States (4). Since 2007, a significant genetic change in the population of P. infestans occurred in the eastern United States with the appearance of new isolates with unique genotypes and epidemiological characteristics (3). These new genotypes US-22, US-23, and US-24 are sensitive to metalaxyl and represent mating types A2, A1, and A1, respectively (1,2). Prior to 2012, only US-8 had been documented in Idaho (5). In 2013, late blight was discovered in late August on potato crops (cv. Russet Norkotah) in Bingham and Madison counties, ID. Infected foliage (four samples from Bingham County and five from Madison) was sent to Michigan State University and the University of Wisconsin for confirmation of P. infestans and characterization of the isolates. Five sections from the leading edge of lesions were excised with a sterilized scalpel and placed on potato tuber slices (‘Dark Red Norkotah’). Pathogen sporulation on the excised lesions was enhanced by incubation in plastic boxes lined with moistened paper towels for 5 days at 18°C in the dark. The sporulating lesions were transferred onto pea agar medium (160 g peas, 5 g sucrose, 15 g agar, 700 ml distilled water) amended with 50 mg/ml vancomycin. Ten pure cultures were obtained for each of 4 isolates per county by hyphal tipping. Cellulose acetate electrophoresis was conducted to determine Gpi allozyme genotype of the 4 isolates (4). The allozyme banding patterns were 100/100 at the Gpi locus, consistent with previously reported analyses of the US-23 genotype (1,2). Genomic DNA was extracted from 10 pure cultures using the DNeasy Plant Mini Kit (Qiagen, Germantown, MD), and SSR analyses were performed. Microsatellite markers Pi02, Pi4B, Pi63, PiG11, and D13 were used in SSR analyses. Pi02, Pi4B, and Pi63 had alleles of 162/164, 213/217, and 270/279 bp in size, respectively which is consistent with the reference US-23 genotype (1). However, heterozygosity was detected at locus D13 in the Idaho genotype with allele size of 134/210 bp and an additional allele of 140/155/176 bp at locus PiG11. This is different from the standard US-23 genotype (homozygous alleles 134/134 at locus D13 and two alleles 140/155 at locus PiG11). These allele changes indicate the isolates may be variants of US-23 isolates as all other phenotypic characteristics were similar to those of reference US-23 isolates. The Idaho genotypes were sensitive to metalaxyl both in vitro on rye A agar medium amended with metalaxyl at <0.1 ppm, and in vivo on Ridomil treated foliage tests at <0.1 ppm (1,2). Mating type assays confirmed the pathogen to be the A1 mating type. In the 2009 and 2010 late blight epidemics in the eastern United States, US-23 was the predominant genotype, but to our knowledge this genotype has never been reported previously in Idaho. Thus, this is the first known report of P. infestans genotype US-23 causing late blight on potato in Idaho, indicating a change in the population of P. infestans. In Idaho, the source of this genotype remains unknown, although infected tomatoes have been implicated in the widespread dissemination of this genotype of P. infestans in the eastern United States. References: (1) G. Danies et al. Plant Dis. 97:873, 2013. (2) C. Hu et al. Plant Dis. 96:1323, 2012. (3) K. Deahl. (Abstr.) Phytopathology 100:S161, 2010. (4) S. B. Goodwin et al. Plant Dis. 79:1181, 1995. (5) USAblight. Recent US Genotypes. Online: www.usablight.org/node/52 , retrieved 3 January 2014.


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1064-1068 ◽  
Author(s):  
Diana Schultz ◽  
Ryan S. Donahoo ◽  
Frances G.M. Perez ◽  
Sucel Tejeda ◽  
Pamela D. Roberts ◽  
...  

Late blight, caused by Phytophthora infestans, affects tomatoes and potatoes in Florida during the winter–spring crop season. During the 2005 season, severe late blight epidemics were observed in Florida prompting our survey. Isolates from 2005 to 2007 were characterized phenotypically based on growth on three media, mating type, pathogenicity, and sensitivity to metalaxyl and genotypically based on two isozymes, mitochondrial DNA (mtDNA), and genomic profiling using the RG57 probe. Isolates collected in this survey were all A2, mtDNA Ia, and either 100/100 (2005), or 100/122 (2006/2007) at the Gpi locus, and homozygous 100 at the Pep locus. Novel genotypes infecting tomato in Florida were observed based on the Gpi locus and RG57 genomic profile. We propose US-20 for the collection of clonal isolates recovered during the 2005 season and US-21 for clones recovered during 2006 and 2007. In addition to these novel genotypes recovered from tomato, one isolate was recovered from potato representing the US-8 clonal lineage. The findings of the survey in south Florida and their implications are presented.


Plant Disease ◽  
2001 ◽  
Vol 85 (9) ◽  
pp. 1006-1012 ◽  
Author(s):  
H. Mayton ◽  
G. A. Forbes ◽  
E. S. G. Mizubuti ◽  
W. E. Fry

Three fungicides were tested in the field for efficacy on late blight caused by Phytophthora infestans. The effects of these fungicides on epidemic development, lesion growth rate and sporulation were measured. No fungicide completely arrested epidemic development under the environmental conditions of these experiments. However, the fungicide mixture, propamocarb hydrochloride plus chlorothalonil, had the most suppressive effect of the fungicides tested. The mechanism of effect included suppression of disease progress and lesion expansion. Growth chamber studies demonstrated that 24°C compared to 10 or 16°C limited cymoxanil efficacy.


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 426-426 ◽  
Author(s):  
C. P. Wijekoon ◽  
R. D. Peters ◽  
K. I. Al-Mughrabi ◽  
L. M. Kawchuk

Phytophthora infestans (Mont.) de Bary has produced significant losses in potato and tomato yield and quality during recent late blight epidemics in North America. During the 1990s, more aggressive and genetically diverse P. infestans genotypes migrated to Canada and the United States (2). For example, US-8 became predominant and was found to be more aggressive in potato than previous clonal lineages of P. infestans. Recent P. infestans genotypes in potato and tomato plants from the United States and Canada include US-22, US-23, and US-24 representing clonal lineages with unique epidemiological characteristics (2,3,4). Characteristic phenotypic traits have been described for P. infestans clonal lineages US-8, US-22, US-23, and US-24 based on the mating type, mefenoxam sensitivity, pathogenicity, and rate of germination suggesting an association between phenotypic variations and the genotype (1,4). Analysis of P. infestans isolates collected in Canada during 2010 revealed the presence of the US-23 clonal lineage in four different areas of western Canada but not in eastern Canada (4). Isolates of P. infestans collected from eastern Canada for several years prior to 2011 were all US-8 A2 mating type. Isolation and analysis of 98 P. infestans isolates in 2011 from New Brunswick and Prince Edward Island followed standard procedures (2,3,4). Results confirmed the presence of the US-23 clonal lineage in Atlantic Canada on potato and tomato leaves with late blight symptoms, increasing the genetic complexity of P. infestans in eastern Canada. Allozyme banding patterns at the glucose-6-phosphate isomerase (Gpi) locus showed a 100/100 profile in 10 P. infestans isolates, consistent with the US-23 clonal lineage (2,3,4). Furthermore, in vitro mefenoxam sensitivity was observed in all 10 P. infestans US-23 isolates from New Brunswick and Prince Edward Island. Mating type assays confirmed the isolates were of the A1 mating type. RFLP analysis of EcoR1-digested genomic DNA using the multilocus RG57 sequence as a probe produced the DNA pattern 1, 2, 5, 6, 10, 13, 14, 17, 20, 21, 24, 24a, 25, indicative of US-23 (2,4). Microsatellite analysis using polymorphic markers on New Brunswick and Prince Edward Island P. infestans isolates produced the Pi4B 213/217 bp, D13 134 bp, and PiG11 140/155 bp profile of P. infestans US-23 (1). These results show the presence of the P. infestans A1 and A2 mating types in New Brunswick and Prince Edward Island, which increases the probability of sexual recombination. To our knowledge, this is the first report of P. infestans clonal lineage US-23 causing late blight in New Brunswick and Prince Edward Island, increasing the genetic diversity from previous years in eastern Canada and underscoring the annual fluctuation occurring in the population composition. References: (1) G. Danies et al. Plant Dis. 97:873, 2013. (2) S. B. Goodwin et al. Phytopathology 84:553, 1994. (3) C. H. Hu et al. Plant Dis. 96:1323, 2012. (4) M. L. Kalischuk et al. Plant Dis. 96:1729, 2012.


1990 ◽  
Vol 55 (7) ◽  
pp. 1691-1707 ◽  
Author(s):  
Miloslav Karel ◽  
Jiří Hostomský ◽  
Jaroslav Nývlt ◽  
Axel König

Crystal growth rates of copper sulphate pentahydrate (CuSO4.5 H2O) determined by different authors and methods are compared. The methods included in this comparison are: (i) Measurement on a fixed crystal suspended in a streaming solution, (ii) measurement on a rotating disc, (iii) measurement in a fluidized bed, (iv) measurement in an agitated suspension. The comparison involves critical estimation of the supersaturation used in measurements, of shape factors used for data treatment and a correction for the effect of temperature. Conclusions are drawn for the choice of values to be specified when data of crystal growth rate measurements are published.


Plant Disease ◽  
2014 ◽  
Vol 98 (6) ◽  
pp. 761-765 ◽  
Author(s):  
Anna C. Seidl Johnson ◽  
Stephen A. Jordan ◽  
Amanda J. Gevens

Late blight, caused by the oomycete Phytophthora infestans, causes serious losses in tomato production worldwide. Application of fungicides is the primary means of management but cultivar resistance, primarily through Ph resistance genes from Solanum pimpinellifolium, can provide a cost-effective and environmentally sound approach to an overall disease management program. Due to highly adaptable pathogen populations, cultivar resistance against late blight is often short lived and continual assessment of disease response to new pathogen types is necessary. We evaluated the disease response of 11 tomato cultivars to one isolate from each of three clonal lineages (US-22, US-23, and US-24) of P. infestans novel to the United States to determine the efficacy of currently deployed Ph genes in hybrid cultivars and the validity of claims of resistance in heirloom cultivars. Lesion length and pathogen growth were reduced on tomato genotypes ‘Plum Regal’ (Ph-3) and ‘Legend’ (Ph-2) compared with the susceptible control ‘Brandywine Red’ following inoculation with one isolate (US-23) but were not significantly different from the control with an isolate of US-22. ‘Mountain Magic’ (Ph-2 and Ph-3) and three heirloom cultivars (‘Wapsipinicon Peach’, ‘Matt's Wild Cherry,’ and ‘Pruden's Purple’) had reduced lesion length and pathogen growth to all three isolates. Although the genetics of resistance are not fully understood for many of these, the heirloom cultivars may be useful for future tomato late blight breeding efforts. All of the cultivars investigated in this work are currently available and use of cultivars exhibiting reduced disease development may limit losses to late blight and reduce reliance on fungicides. Resistant cultivars also limit the production of inoculum, reducing overall late blight risk and spread in tomato and potato crops.


Plant Disease ◽  
2003 ◽  
Vol 87 (8) ◽  
pp. 983-990 ◽  
Author(s):  
J. C. Jenkins ◽  
R. K. Jones

A total of 32 commercial cultivars grown in the United States and 15 potato breeding lines and non-U.S. cultivars were evaluated at Rosemount, MN for their reaction to the US-8 strain of Phytophthora infestans. Commercial red-, russet-, and white-skinned cultivars tested in the commercial cultivar trial (COMC) in 1996 and 1997 were susceptible (S) to moderately susceptible (MS) to this organism, except for Elba, which ranked as moderately resistant (MR). Yellow-fleshed cvs. Hertha, Santé, and Agria were screened in the late blight nursery (LB1) in 1997 and 1998 and classified as S to MS while Island Sunshine, Brador, and Aziza were classified as MR. The Scottish breeding line G6582-3 and U.S. breeding lines A90586-11, AWN86514-2, AWN85624-5, B0692-4, B0718-3, and B0767-2 were classified as resistant (R). Comparison among entries was based on the area under the disease progress curve (AUDPC). Spearman rank correlation for AUDPC in the 1996 and 1997 COMC trials at 14 to 18 days after inoculation (r = 0.65, P < 0.01) was greater than any other interval tested. The Spearman rank correlation for AUDPC in the 1997 and 1998 LB1 trials at 14 to 18 days after inoculation was r = 0.87, P < 0.01 and increased only slightly in successive assessment dates, suggesting that, in Minnesota, effective evaluation of the foliar infection of late blight can occur at 18 days after inoculation or later. The average tuber blight incidence for the COMC trials at harvest was 10.0% in 1996 and 9.7% in 1997. The average tuber blight incidence for the LB1 trials at harvest was 4.3% in 1997 and 14.6% in 1998. Pearson correlations between tuber blight incidence and foliar disease for the COMC trials was very low; however, for the LBl trials, it was significant in both 1997 (r = 0.53, P < 0.01) and 1998 (r = 0.53, P < 0.01). Asymptomatic tubers harvested from the COMC trials developed additional tuber blight when stored 28 days at ambient temperatures and still more when stored for another 5 months at 5°C. Surviving tubers of nine entries were planted in field trials during 1997 and 1998 to determine if plants that develop from tubers exposed to P. infestans could manifest late blight in the subsequent season. Late blight failed to develop throughout the trials in either year.


Sign in / Sign up

Export Citation Format

Share Document