Genetic Dissection of T-DNA Insertional Mutants Reveals Uncoupling of Dikaryotic Filamentation and Virulence in Sugarcane Smut Fungus

2021 ◽  
Author(s):  
Shan Lu ◽  
Feng Guo ◽  
Zhiqiang Wang ◽  
Xiaorui Shen ◽  
Yizhen Deng ◽  
...  

The biotrophic basidiomycetous fungus Sporisorium scitamineum causing smut disease in sugarcane is characterized by a life-cycle composed of a yeast-like nonpathogenic haploid basidiosporial stage outside the plant and filamentous pathogenic dikaryotic hyphae within the plant. Under field conditions, dikaryotic hyphae are formed after mating of two opposite mating-type strains. However, the mechanisms underlying genetic regulation of filamentation and its association with pathogenicity and development of teliospores are currently unclear. This study has focused on the characterization and genetic dissection of haploid filamentous mutants derived from T-DNA insertional mutagenesis. Our results support the existence of at least three genotypes among the six haploid filamentous mutants that differentially contribute to virulence and development of the whip and teliospore, providing a novel foundation for further investigation of the regulatory networks associated with pathogenicity and teliospore development in S. scitamineum.

2021 ◽  
Vol 9 (1) ◽  
pp. 187
Author(s):  
Doron Teper ◽  
Sheo Shankar Pandey ◽  
Nian Wang

Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.


1991 ◽  
Vol 3 (2) ◽  
pp. 149 ◽  
Author(s):  
Deena Errampalli ◽  
David Patton ◽  
Linda Castle ◽  
Leigh Mickelson ◽  
Karl Hansen ◽  
...  

2018 ◽  
Vol 11 (9) ◽  
pp. 770-780 ◽  
Author(s):  
Guang Liu ◽  
Limei Wang ◽  
Junmin Pan

Abstract The motility of cilia or eukaryotic flagella is powered by the axonemal dyneins, which are preassembled in the cytoplasm by proteins termed dynein arm assembly factors (DNAAFs) before being transported to and assembled on the ciliary axoneme. Here, we characterize the function of WDR92 in Chlamydomonas. Loss of WDR92, a cytoplasmic protein, in a mutant wdr92 generated by DNA insertional mutagenesis resulted in aflagellate cells or cells with stumpy or short flagella, disappearance of axonemal dynein arms, and diminishment of dynein arm heavy chains in the cytoplasm, suggesting that WDR92 is a DNAAF. Immunoprecipitation of WDR92 followed by mass spectrometry identified inner dynein arm heavy chains and multiple DNAAFs including RuvBL1, RPAP3, MOT48, ODA7, and DYX1C. The PIH1 domain-containing protein MOT48 formed a R2TP-like complex with RuvBL1/2 and RPAP3, while PF13, another PIH1 domain-containing protein with function in dynein preassembly, did not. Interestingly, the third PIH1 domain-containing protein TWI1 was not related to flagellar motility. WDR92 physically interacted with the R2TP-like complex and the other identified DNNAFs. Our data suggest that WDR92 functions in association with the HSP90 co-chaperone R2TP-like complex as well as linking other DNAAFs in dynein preassembly.


Genetics ◽  
1980 ◽  
Vol 95 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Arthur J Hilliker ◽  
Stephen H Clark ◽  
Arthur Chovnick ◽  
William M Gelbart

ABSTRACT This report describes the genetic analysis of a region of the third chromosome of Drosophila melanogaster extending from 87D2-4 to 87E12-F1, an interval of 23 or 24 polytene chromosome bands. This region includes the rosy (ry, 3-52.0) locus, carrying the structural information for xanthine dehydrogenase (XDH). We have, in recent years, focused attention on the genetic regulation of the rosy locus and, therefore, wished to ascertain in detail the immediate genetic environmcnt of this locus. Specifically, we question if rosy is a solitary genetic unit or part of a larger complex genetic unit encompassing adjacent genes. Our data also provide opportunity to examine further the relationship between euchromatic gene distrihution and polytene chromosome structure.—The results of our genetic dissection of the rosy microregion substantiate the conclusion drawn earlier (SCHALET, KERNAGHAN and CHOVNICK 1964) that the rosy locus is the only gene in this region concerned with XDH activity and that all adjacent genetic units are functionally, as well as spatially, distinct Erom the rosy gene. Within the rosy micro-region, we observed a close correspondence between the number of complementation groups (21) and the number of polytene chromosome bands (23 or 24). Consideration of this latter observation in conjunction with those of similar studies of other chhromosomal regions supports the hypothesis that each polytene chromosome band corresponds to a single genetic unit.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yonggang Ma ◽  
Junmei Liu ◽  
Jiao Ai

Genetic regulatory networks (GRNs) play an important role in the development and evolution of the biological system. With the rapid development of DNA technology, further research on GRNs becomes possible. In this paper, we discuss a class of time-delay genetic regulatory networks with external inputs. Firstly, under some reasonable assumptions, using matrix measures, matrix norm inequalities, and Halanay inequalities, we give the global dissipative properties of the solution of the time-delay genetic regulation networks and estimate the parameter-dependent global attraction set. Secondly, an error feedback control system is designed for the time-delay genetic control networks. Furthermore, we prove that the estimation error of the model is asymptotically stable. Finally, two examples are used to illustrate the validity of the theoretical results.


1992 ◽  
Vol 20 (5) ◽  
pp. 963-976 ◽  
Author(s):  
Csaba Koncz ◽  
Kinga N�meth ◽  
George P. R�dei ◽  
Jeff Schell

Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 669
Author(s):  
Kuang-Hung Liu ◽  
Wei-Chiang Shen

The heterothallic basidiomycetous fungus Cryptococcus neoformans has two mating types, MATa and MATα. Morphological progression of bisexual reproduction in C. neoformans is as follows: yeast to hyphal transition, filament extension, basidium formation, meiosis, and sporulation. C. neoformans Cdk-related kinase 1 (CRK1) is a negative regulator of bisexual mating. In this study, we characterized the morphological features of mating structures in the crk1 mutant and determined the genetic interaction of CRK1 in the regulatory networks of sexual differentiation. In the bilateral crk1 mutant cross, despite shorter length of filaments than in the wild-type cross, dikaryotic filaments and other structures still remained intact during bisexual mating, but the timing of basidium formation was approximately 18 h earlier than in the cross between wild type strains. Furthermore, gene expression analyses revealed that CRK1 modulated the expression of genes involved in the progression of hyphal elongation, basidium formation, karyogamy and meiosis. Phenotypic results showed that, although deletion of C. neoformans CRK1 gene increased the efficiency of bisexual mating, filamentation in the crk1 mutant was blocked by MAT2 or ZNF2 mutation. A bioinformatics survey predicted the C. neoformans GATA transcriptional factor Gat1 as a potential substrate of Crk1 kinase. Our genetic and phenotypic findings revealed that C. neoformans GAT1 and CRK1 formed a regulatory circuit to negatively regulate MAT2 to control filamentation progression and transition during bisexual mating.


Sign in / Sign up

Export Citation Format

Share Document