scholarly journals Stability of Hybrid Maize Reaction to Gibberella Ear Rot and Deoxynivalenol Contamination of Grain

2020 ◽  
Vol 110 (12) ◽  
pp. 1908-1922
Author(s):  
F. Dalla Lana ◽  
P. A. Paul ◽  
R. Minyo ◽  
P. Thomison ◽  
L. V. Madden

Trials were conducted to quantify the stability (or lack of G × E interaction) of 15 maize hybrids to Gibberella ear rot (GER; caused by Fusarium graminearum) and deoxynivalenol (DON) contamination of grain across 30 Ohio environments (3 years × 10 locations). In each environment, one plot of each hybrid was planted and 10 ears per plot were inoculated via the silk channel. GER severity (proportion of ear area diseased) and DON contamination of grain (ppm) were quantified. Multiple rank-based methods, including Kendall’s concordance coefficient (W) and Piepho’s U, were used to quantify hybrid stability. The results found insufficient evidence to suggest crossover G × E interaction of ranks, with W greater than zero for GER (W = 0.28) and DON (W = 0.26), and U not statistically significant for either variable (P > 0.20). Linear mixed models (LMMs) were also used to quantify hybrid stability, accounting for crossover or noncrossover G × E interaction of transformed observed data. Based on information criteria and likelihood ratio tests for GER and DON response variables, the models with more complex variance-covariance structures—heterogeneous compound symmetry and factor-analytic—provided a better fit than the model with the simpler compound symmetry structure, indicating that one or more hybrids differed in stability. Overall, hybrids were stable based on rank-based methods, which indicated a lack of crossover G × E interaction, but the LMMs identified a few hybrids that were sensitive to environment. Resistant hybrids were generally more stable than susceptible hybrids.


Plant Disease ◽  
2021 ◽  
Vol 105 (1) ◽  
pp. 114-126 ◽  
Author(s):  
F. Dalla Lana ◽  
L. V. Madden ◽  
P. A. Paul

Gibberella ear rot (GER) severity (percent area of the ear diseased) and associated grain contamination with mycotoxins were quantified in plots of 15 to 16 maize hybrids planted at 10 Ohio locations from 2015 to 2018. Deoxynivalenol (DON) was quantified in grain samples in all 4 years, whereas nivalenol, 3-acetyldeoxynivalenol, and 15-acetyldeoxynivalenol (15ADON) were quantified only in the last 2 years. Only DON and 15ADON were detected. The highest levels of GER and DON contamination were observed for 2018, followed by 2016 and 2017. No GER symptoms or DON were detected in 2015. Approximately 41% of the samples from asymptomatic ears had detectable levels of DON, and 7% of these samples from 2016 had DON > 5 ppm. Associations between DON contamination and 43 variables representing summaries of temperature (T), relative humidity (RH), rainfall (R), surface wetness, and T-RH combinations for different window lengths and positions relative to R1 growth stage were quantified with Spearman correlation coefficients (r). Fifteen-day window lengths tended to show the highest correlations. Most of the variables based on T, R, RH, and T-RH were significantly correlated with DON for the 15-day window, as well as other windows. For moisture-related variables, there generally was a negative correlation before R1, changing to a positive correlation after R1. Results showed that GER and DON can be frequently found in Ohio maize fields, with the risk of DON being associated with multiple weather variables, particularly those representing combinations of T between 15 and 30°C and RH > 80 summarized during the 3 weeks after R1.



2021 ◽  
Author(s):  
Fabrice Rwasimitana ◽  
Ngaboyisonga Claver ◽  
Ukozehasi Celestin ◽  
Eva Johansson

A multi-environment yield trial is important to understand the genotype by environment interaction and to select high performing and stable crop varieties. The aim of this study was to identify high yielding and stable hybrid maize varieties for mid altitudes of Rwanda, to compare the performance of new hybrid varieties with commercial checks, and to determine the extent of genotype by environment interaction. Maize is a staple crop used to fight hunger and malnutrition in developing countries. Different varieties have been released to increase yield including Open Pollinated Varieties (OPVs) and hybrids. Genotype by Environment interaction is an issue that all breeding program need to overcome. In the future, improved varieties will be needed in order to increase income for farmers and help in food security Field experiments were conducted to assess the performance and the stability of 27 maize varieties in the mid altitudes zone of Rwanda in the Cyabayaga, Rubona and Bugarama sites. The experimental design was alpha lattice (0,1) with a Randomized Complete Block Design (RCBD). Data were collected for a number of characters i.e. silking, Antesis-Silking Interval (ASI), plant height, plant aspect, ear per plant, husk cover, ear aspect, ear rot and grain yield. Data were analyzed by GenS Stat statistical computer package, Discovery Edition. ANOVA and AMMI analysis were applied to assess the performance and the stability of varieties and the degree of genotype by environment interaction (G×E). In addition, Principal Component Analysis (PCA) and cluster analysis were conducted to assess relationships between varieties. The results showed that RHM1706, RHMM1701, RHM1409, RHMM1707, WH509, RHMM1704, RHM407, WH101, RHMM1710, RHMM1708, PAN53 and RHM104 were stable across locations. Furthermore, the evaluated varieties were found to cluster into five groups. Varieties found to be most stable are recommended for further use.



Biosfera ◽  
2015 ◽  
Vol 32 (2) ◽  
pp. 103
Author(s):  
Soenartiningsih Soenartiningsih

Gibberella and Diplodia ear rot is a disease that can damage the corn cobs and corn kernels resulting in lower quality and quantity of seed. The objective of the research are to find the varieties of corn which are resistant  the ear  rot disease Gibberella and Diplodia. This study was conducted in Limang Karo regency, North Sumatera, a randomized block design with three replications, each treatment comprised 4 rows and each row contained 25 plants with a spacing of 75 x 20 cm. The results showed 25 Hybrid maize tested against Gibberella ear rot there are 7 Hybrid corn hybrids that are resistant to ear rot  Kenia-2, NK33, Bima 3, Bima 10 Bima 12 Q, NEI-9008 and X8B649 (check resistance) and moderately resistance there are 9 hybrid that Kenia-3, DK979, NK22, P12, Gumarang, Srikandi putih, Lamuru and Sukmaraga  and 9 hybrid to ear rot disease were reacted susceptible and highly susceptible. Whereas from 25 Hybrid maize tested against Diplodia ear rot there are 6 Hybrid corn hybrids resistant to ear rot disease is Kenia - 2, NK33, Bima 3, Bima 12 Q, NEI-9008 and X8B649 (check resistance) while that is moderately resistancet there are 11 hybrid that is Kenia-3, DK979, NK22, P29, Bisi 2, P12, Bima 10, Gumarang, Srikandi putih, Lamuru and Sukmaraga, while 8 hybrid others were reacted susceptible and highly susceptible.



1995 ◽  
Vol 3 (5) ◽  
pp. 383-388 ◽  
Author(s):  
Françoise Cossette ◽  
J. David Miller


2018 ◽  
Vol 98 (4) ◽  
pp. 897-907
Author(s):  
Gaofeng Jia ◽  
Helen M. Booker

Multi-environment trials are conducted to evaluate the performance of cultivars. In a combined analysis, the mixed model is superior to an analysis of variance for evaluating and comparing cultivars and dealing with an unbalanced data structure. This study seeks to identify the optimal models using the Saskatchewan Variety Performance Group post-registration regional trial data for flax. Yield data were collected for 15 entries in post-registration tests conducted in Saskatchewan from 2007 to 2016 (except 2011) and 16 mixed models with homogeneous or heterogeneous residual errors were compared. A compound symmetry model with heterogeneous residual error (CSR) had the best fit, with a normal distribution of residuals and a mean of zero fitted to the trial data for each year. The compound symmetry model with homogeneous residual error (CS) and a model extending the CSR to higher dimensions (DIAGR) were the next best models in most cases. Five hundred random samples from a two-stage sampling method were produced to determine the optimal models suitable for various environments. The CSR model was superior to other models for 396 out of 500 samples (79.2%). The top three models, CSR, CS, and DIAGR, had higher statistical power and could be used to access the yield stability of the new flax cultivars. Optimal mixed models are recommended for future data analysis of new flax cultivars in regional tests.



Author(s):  
Laura ȘOPTEREAN ◽  
Loredana SUCIU ◽  
Ana Maria VĂLEAN ◽  
Felicia MUREŞANU ◽  
Carmen PUIA

The most important disease of maize in Romania are stalk and ear rot, which caused yield losses in average of 20%. The resistant hibrids represent one of the most efficient solution for reducing the field loses caused by Fusarium spp. on the maize (Nagy et al., 2006). Diseases caused by Fusarium spp. can affect the yield and grain quality of maize because of contamination with numerous mycotoxins produced by these fungi (Czembor et al., 2015). The purpose of this paper was to know more about the reaction of different maize hybrids to Fusarium and the evaluating the effect of ear rot on the yield ability and mycotoxins accumulation. The experiments carried out at ARDS Turda, during four years (2012-2015). The biological material was represented by 8 hybrids, from different maturity groups, tested in two infection conditions with Fusarium spp. (natural and artificial infections). The temperature and rainfalls of the four years of experiments corresponding to the vegetation of maize (april-september) are influenced favourably the pathogenesis of stalk and ear rot caused by Fusarium spp. and a good discrimination of the resistance reaction of genotypes. Fusarium ear rot has significantly affected production capacity and chemical composition of corn hybrids tested. In conditions of artificial infection with Fusarium spp. was a decrease in the content of starch, fat and increased protein content compared with artificially inoculated variants. The quantity of fumonizin B1+B2 has reached to 5630 μg/kg in conditions of artificial infection. There are negative correlations between production capacity and degree of attack of fusarium ear rot; depending on the reacting genotypes tested increasing disease causes production decrease. The response of maize hybrids to Fusarium infection is influenced by infection and climatic conditions. These factors affect production both in terms of quantity and quality and accumulation of mycotoxins.



2019 ◽  
Vol 2 (2) ◽  
pp. 27-31
Author(s):  
Pukar Khanal ◽  
Rupak Karn ◽  
Pratibha Budhathoki Chhetri ◽  
Samita Karki ◽  
Shrawan Kumar Sah

AbstractSowing dates and varieties affect the productivity of maize. A field experiment was conducted to find out the response of maize hybrids to sowing dates on growth and productivity of maize in spring season at Lamahi, Dang in 2019. The experiment was laid out in two factor factorial Randomized Complete Block Design with four replications. The treatment consisted of combination of three different sowing dates (February 1, February12 and February 23) and two maize varieties (Arun-2 i.e. OPV and hybrid Bioseed-9220).The result revealed that earlier planting on February 1 produced the highest yield (8265 Kg ha-1) which was significantly superior than latter planting of February 12(6099 kg ha-1)and February 23 (5934 kg ha-1).The higher yield in earlier planting was due to significantly higher no of kernel per ear, non-significant but higher number of cob per unit area, thousand grain weight. Similarly, Bioseed 9220 produced higher yield (7798 kg ha-1) compared to Arun-2 (5,734 kg ha-1). The higher yield of hybrid Bioseed 9220 was because of higher number of cob per unit area harvested and more number of kernel per cob. Therefore, earlier planting with hybrid maize is recommended in spring season of Dang and locations with similar climatic conditions for higher productivity of maize.



2021 ◽  
Vol 19 (1) ◽  
pp. 27-43
Author(s):  
KB Koirala ◽  
MP Tripathi ◽  
K Seetharam ◽  
MT Vinayan ◽  
PH Zaidi

In recent years, National Maize Research Program (NMRP) aimed a paradigm shift from open-pollinated varieties (OPVs) towards hybrid maize to achieve self-sufficiency in maize for food, feed, and hybrid seed within the country. In this mission, it is necessary to identify and deploy high-yielding stress-resilient maize hybrids that can cope with climate change effects, including heat stress. Under the project “Heat Tolerant Maize for Asia (HTMA)”, NMRP introduced the hybrids that performed better in previous years in different environments from International Maize and Wheat Improvement Center (CIMMYT) Hyderabad for multilocation on-farm testing. Fifteen genotypes were evaluated at two locations, two sites in Madi, Chitwan, and one in Ghorahi, Dang, along with Rampur Hybrid-8 as a heat-tolerant check, and RML-86/RML-96 and RML-95/RML-96 as normal checks. Randomized complete block design (RCBD) was used with three replicates during the spring of 2016/17. Likewise, another 20 and 18 promising hybrids were demonstrated during the winter of 2016/17 and 2017/18, respectively, in different hybrid growing pockets considering a site – a replication. Grain yield and yield attributing traits at all locations were recorded. From the across-site data analysis, selected heat-tolerant hybrids from the experiment were CAH1432, ZH15405, ZH141592, and CAH1715 which were statistically at par with promising normal hybrid RML-86/RML-96 and superior to already released heat-tolerant Rampur Hybrid-8. In 2016/17, ZH138098, ZH1620, and VH121062 were farmers’ preferred heat-tolerant hybrids. In 2017/18, Rampur Hybrid-10, ZH141592, CAH1715, and ZH15440 were preferred by farmers. The selected bestbet are taken forward for official release/registration followed by commercialization through a public-private partnership with Nepali seed companies/cooperatives. SAARC J. Agric., 19(1): 27-43 (2021)



2016 ◽  
Vol 2 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Mahendra Prasad Tripathi ◽  
Jiban Shrestha ◽  
Dil Bahadur Gurung

The hybrid maize cultivars of multinational seed companies are gradually being popular among the farmers in Nepal. This paper reports on research finding of 117 maize hybrids of 20 seed companies assessed for grain yield and other traits at three sites in winter season of 2011 and 2012. The objective of the study was to identify superior maize hybrids suitable for winter time planting in eastern, central and inner Terai of Nepal. Across site analysis of variance revealed that highly significant effect of genotype and genotype × environment interaction (GEI) on grain yield of commercial hybrids. Overall, 47 genotypes of 16 seed companies identified as high yielding and stable based on superiority measures. The statistical analysis ranked topmost three genotypes among tested hybrids as P3856 (10515 kg ha-1), Bisco prince (8763 kg ha-1) as well as Shaktiman (8654 kg ha-1) in the first year; and 3022 (8378 kg ha-1), Kirtiman manik (8323 kg ha-1) as well as Top class (7996 kg ha-1) in the second year. It can be concluded that stable and good performing hybrids identified as potential commercial hybrids for general cultivation on similar environments in Nepal.



Author(s):  
Aida Kebede ◽  
Lana M Reid ◽  
Constantin Voloaca ◽  
Ron De Schiffart ◽  
Jinhe Wu ◽  
...  

CO476 is an early-medium maturity (76 days to flowering) mostly stiff stalk (BSSS) yellow flint inbred which combines well with a stiff stalk B14 type and iodent type testers in many different locations. CO476 possesses moderate resistance to gibberella ear rot both in the inbred and in hybrid combinations. It has intermediate response to common smut, fusarium stalk rot, northern corn leaf blight, common rust and Goss’s wilt.



Sign in / Sign up

Export Citation Format

Share Document