Combination of developmental behaviors and transcriptome reveals differential response mechanisms of Phytophthora sojae to aspartic acid and glucose in seed exudates

2021 ◽  
Author(s):  
Xinying Gao ◽  
Haixu Liu ◽  
Han Yu ◽  
Zhuoqun Zhang ◽  
Xiangqi Bi ◽  
...  

Isoflavones in soybean seed and root exudates are host specific signal molecules for Phytophthora sojae to recognize host soybean. G protein and calcium signaling pathway are involved in the chemotaxis of zoospores in the recognition of isoflavones. To investigate the role of host non-specific signaling molecules (sugars and amino acids) in seed and root exudates in zoospore chemotaxis and mycelial growth, the transcriptome of P. sojae responding to aspartic acid (Asp) and glucose (Glc) was analyzed by RNA-seq method. We found that the relative in situ concentrations of amino acids and sugars significantly promoted zoospore chemotaxis, as do isoflavones. Transcriptomics showed that both similarity and difference existed in response mechanisms of P. sojae to Asp and Glc. Asp and Glc activated MAPK signaling pathway and phosphatidylinositol signaling system but not G-protein signaling pathway, which have been reported to be responsible for zoospore chemotaxis. In addition, ubiquitin mediated proteolysis and ABC transporters were also activated by Asp and Glc. Meanwhile, glutathione signaling pathway uniquely participated in the response of P. sojae to Asp but not involved in the response process to Glc, which is waiting for further study. Our results provide new insights into the molecular mechanism of zoospore response to Asp and Glc.

2013 ◽  
Vol 14 (1) ◽  
pp. 105
Author(s):  
T. Georgieva ◽  
P. Zorovski

The purpose of this survey is to study the content of non-essential amino acids in four winter (Dunav 1, Ruse 8, Resor 1, Line M-K) and five spring (Obraztsov chiflik 4, Mina, HiFi, Novosadski golozarnest and Prista 2) cultivars of oats grown in Central Southern Bulgaria within the period from 2007 to 2009. The tested cultivars have different contents of non-essential amino acids. Dunav 1 has the highest quantity of glicine (5.12 g/100 g protein) of all the winter cultivars, Ruse 8 has the highest quantity of alanine (5.69 g/100 g protein) and Resor 1 – the highest quantity of arginine (6.14 g/100 g protein). Generally speaking, the spring cultivars have a larger quantity of glutamic acid (from 25.86 to 26.07 g/100 g protein) and proline (from 6.15 to 8.21 g/100 g protein) but a smaller quantity of glycine (from 4.68 to 4.99 g/100 g protein) compared to the winter cultivars. The naked cultivar Mina has the highest quantity of cystine (2.14 g/100 g protein), cultivar Prista 2 has the highest quantity of proline (8.21 g/100 g protein) and glutamic acid (26.07 g/100g protein) and HiFi ranks first in terms of aspartic acid (9.05 g/100 g protein), serine (5.02 g/100 g protein) and tyrosine (2.09 g/100 g protein). In the study we have also established certain relations between non-essential amino acids.


2011 ◽  
Vol 10 (10) ◽  
pp. 1306-1316 ◽  
Author(s):  
Laura H. Okagaki ◽  
Yina Wang ◽  
Elizabeth R. Ballou ◽  
Teresa R. O'Meara ◽  
Yong-Sun Bahn ◽  
...  

ABSTRACT The titan cell is a recently described morphological form of the pathogenic fungus Cryptococcus neoformans . Occurring during the earliest stages of lung infection, titan cells are 5 to 10 times larger than the normal yeast-like cells, thereby resisting engulfment by lung phagocytes and favoring the persistence of infection. These enlarged cells exhibit an altered capsule structure, a thickened cell wall, increased ploidy, and resistance to nitrosative and oxidative stresses. We demonstrate that two G-protein-coupled receptors are important for induction of the titan cell phenotype: the Ste3 a pheromone receptor (in mating type a cells) and the Gpr5 protein. Both receptors control titan cell formation through elements of the cyclic AMP (cAMP)/protein kinase A (PKA) pathway. This conserved signaling pathway, in turn, mediates its effect on titan cells through the PKA-regulated Rim101 transcription factor. Additional downstream effectors required for titan cell formation include the G 1 cyclin Pcl103, the Rho104 GTPase, and two GTPase-activating proteins, Gap1 and Cnc1560. These observations support developing models in which the PKA signaling pathway coordinately regulates many virulence-associated phenotypes in diverse human pathogens.


Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 902
Author(s):  
Hee-Soo Park ◽  
Min-Ju Kim ◽  
Jae-Hyuk Yu ◽  
Kwang-Soo Shin

The heterotrimeric G-protein (G-protein) signaling pathway is one of the most important signaling pathways that transmit external signals into the inside of the cell, triggering appropriate biological responses. The external signals are sensed by various G-protein-coupled receptors (GPCRs) and transmitted into G-proteins consisting of the α, β, and γ subunits. Regulators of G-protein signaling (RGSs) are the key controllers of G-protein signaling pathways. GPCRs, G-proteins, and RGSs are the primary upstream components of the G-protein signaling pathway, and they are highly conserved in most filamentous fungi, playing diverse roles in biological processes. Recent studies characterized the G-protein signaling components in the opportunistic pathogenic fungus Aspergillus fumigatus. In this review, we have summarized the characteristics and functions of GPCRs, G-proteins, and RGSs, and their regulatory roles in governing fungal growth, asexual development, germination, stress tolerance, and virulence in A. fumigatus.


Hypertension ◽  
2013 ◽  
Vol 61 (3) ◽  
pp. 655-661 ◽  
Author(s):  
Anne Stine Kvehaugen ◽  
Øyvind Melien ◽  
Oddgeir Lingaas Holmen ◽  
Hannele Laivuori ◽  
Pål Øian ◽  
...  

2018 ◽  
Vol 315 (3) ◽  
pp. F503-F511 ◽  
Author(s):  
Zhizhi Zhuang ◽  
Jia Xiao ◽  
Xinxin Chen ◽  
Xiaohan Hu ◽  
Ruidian Li ◽  
...  

G protein pathway suppressor 2 (GPS2) is a multifunctional protein and transcriptional regulation factor that is involved in the G protein MAPK signaling pathway. It has been shown that the MAPK signaling pathway plays an important role in the regulation of renal large-conductance Ca2+-activated potassium (BK) channels. In this study, we investigated the effects of GPS2 on BK channel activity and protein expression. In human embryonic kidney (HEK) BK stably expressing cells transfected with either GPS2 or its vector control, a single-cell recording showed that GPS2 significantly increased BK channel activity ( NPo), increasing BK open probability ( Po), and channel number ( N) compared with the control. In Cos-7 cells and HEK 293 T cells, GPS2 overexpression significantly enhanced the total protein expression of BK in a dose-dependent manner. Knockdown of GPS2 expression significantly decreased BK protein expression, while increasing ERK1/2 phosphorylation. Knockdown of ERK1/2 expression reversed the GPS2 siRNA-mediated inhibition of BK protein expression in Cos-7 cells. Pretreatments of Cos-7 cells with either the lysosomal inhibitor bafilomycin A1 or the proteasomal inhibitor MG132 partially reversed the inhibitory effects of GPS2 siRNA on BK protein expression. In addition, feeding a high-potassium diet significantly increased both GPS2 and BK protein abundance in mice. These data suggest that GPS2 enhances BK channel activity and its protein expression by reducing ERK1/2 signaling-mediated degradation of the channel.


2016 ◽  
Vol 82 (3) ◽  
pp. 142-148 ◽  
Author(s):  
Bing Suo ◽  
Qiuming Chen ◽  
Wenxu Wu ◽  
Di Wu ◽  
Miao Tian ◽  
...  

2021 ◽  
Author(s):  
Zhuoqun Zhang ◽  
Yifan Zhao ◽  
Tai An ◽  
Han Yu ◽  
Xiangqi Bi ◽  
...  

Phytophthora sojae does not infect nonhost maize (Zea mays) but infects nonhost common bean (Phaseolus vulgaris) under inoculation. Soybean seed exudates participate in mediating host resistance to P. sojae prior to infection. This study aims to elucidate the role of seed exudates in mediating the nonhost resistance to P. sojae prior to infection. The behaviors of P. sojae zoospores in response to the seed exudates were determined using an assay chamber and a concave slide. The proteomes of P. sojae zoospores in response to the seed exudates were analyzed with the tandem mass tag (TMT) method. The key proteins were quantitatively verified by parallel reaction monitoring (PRM). Maize seed exudates exerted a repellent effect on zoospores. This result explains why zoospores sense repelling signaling molecules that weaken and strongly inhibit chemotaxis signals in the phosphatidylinositol signaling pathway and arachidonic acid metabolism pathway. Common bean seed exudates did not exhibit any attraction to the zoospores because the G protein signaling pathway, had no significant change. The proteins protecting the cell membrane structure were significantly downregulated, and the early apoptosis signal glutathione was enhanced in zoospores responding to common bean seed exudates, which resulted in dissolution of the cysts. Maize and common bean seed exudates mediate part of the nonhost resistance to P. sojae via different mechanisms prior to infection. The immunity of maize to P. sojae is due to the repellent effect of maize seed exudates on zoospores. Common bean seed exudates participate in mediating nonhost resistance by dissolving cysts.


Sign in / Sign up

Export Citation Format

Share Document