Biological Control of Blue Mold and Gray Mold on Apple and Pear withPseudomonas cepacia

1988 ◽  
Vol 78 (12) ◽  
pp. 1697 ◽  
Author(s):  
W. J. Janisiewicz
2016 ◽  
Vol 41 (3) ◽  
pp. 169-176 ◽  
Author(s):  
Sheng Jun Xu ◽  
Duck Hwan Park ◽  
Joon-Young Kim ◽  
Byung-Sup Kim

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1815
Author(s):  
Kazuhiro Hamaoka ◽  
Yoshinao Aoki ◽  
Shunji Suzuki

As the use of chemical fungicides has raised environmental concerns, biological control agents have attracted interest as an alternative to chemical fungicides for plant-disease control. In this study, we attempted to explore biological control agents for three fungal phytopathogens causing downy mildew, gray mold, and ripe rot in grapevines, which are derived from shoot xylem of grapevines. KOF112, which was isolated from the Japanese indigenous wine grape Vitis sp. cv. Koshu, inhibited mycelial growth of Botrytis cinerea, Colletotrichum gloeosporioides, and Phytophthora infestans. The KOF112-inhibited mycelial tips were swollen or ruptured, suggesting that KOF112 produces antifungal substances. Analysis of the 16S rDNA sequence revealed that KOF112 is a strain of Bacillus velezensis. Comparative genome analysis indicated significant differences in the synthesis of non-ribosomal synthesized antimicrobial peptides and polyketides between KOF112 and the antagonistic B. velezensis FZB42. KOF112 showed biocontrol activities against gray mold caused by B. cinerea, anthracnose by C. gloeosporioides, and downy mildew by Plasmopara viticola. In the KOF112–P. viticola interaction, KOF112 inhibited zoospore release from P. viticola zoosporangia but not zoospore germination. In addition, KOF112 drastically upregulated the expression of genes encoding class IV chitinase and β-1,3-glucanase in grape leaves, suggesting that KOF112 also works as a biotic elicitor in grapevine. Because it is considered that endophytic KOF112 can colonize well in and/or on grapevine, KOF112 may contribute to pest-management strategies in viticulture and potentially reduce the frequency of chemical fungicide application.


FLORESTA ◽  
2013 ◽  
Vol 43 (1) ◽  
pp. 145 ◽  
Author(s):  
José Antonio Sbravatti Junior ◽  
Celso Garcia Auer ◽  
Ida Chapaval Pimentel ◽  
Álvaro Figueredo dos Santos ◽  
Bruno Schultz

   O Eucalyptus benthamii é uma das principais espécies de eucalipto plantadas na região Sul do Brasil, por sua resistência a geadas e por seu uso na produção florestal de madeira para fins energéticos. Na produção de mudas, uma das principais doenças ocorrentes em viveiros é o mofo-cinzento, causado pelo fungo Botrytis cinerea. Uma das alternativas para o controle dessa doença é o controle biológico com fungos endofíticos, os quais podem competir com os patógenos foliares de mudas de eucalipto. O objetivo deste trabalho foi isolar os fungos endofíticos provenientes de mudas de E. benthamii, identificá-los e selecioná-los para o controle de B. cinerea. Eles foram isolados do interior de tecidos vegetais desinfectados, identificados de acordo com critérios macro e micromorfológicos e classificados a partir de testes de controle biológico in vitro. Os resultados evidenciaram o potencial antagonista dos fungos Aspergillus sp., Penicillium sp. e Trichoderma sp. Nenhum desses fungos causou lesões em mudas de E. benthamii.Palavras-chave: Mofo-cinzento; eucalipto; viveiro.AbstractIn vitro selection of endophytes for biological control of Botrytis cinerea in Eucalyptus benthamii. Eucalyptus benthamii is one of the main eucalypt species planted in Southern Brazil, due to its resistance to frost and its use in the production of forest wood for energy purposes. During the production of seedlings, the main disease occurring in forest nurseries is gray-mold caused by the fungus Botrytis cinerea. One alternative for control this disease is biological control with fungal endophytes, which can compete with the foliar pathogens of eucalypt seedlings. The objective of this study was to isolate endophytic fungi from seedlings of Eucalyptus benthamii, identify and select them for B. cinerea control. These were isolated from the interior of disinfected plant tissues, identified according to macro and micromorphological criteria, and based on tests of biological control in vitro. The results revealed the potential antagonist of Aspergillus sp., Penicillium sp. and Trichoderma sp. No fungi caused lesions in E. benthamii seedlings.Keywords: Gray-mold; eucalypt; nursery.    


Plant Disease ◽  
2003 ◽  
Vol 87 (10) ◽  
pp. 1260-1262 ◽  
Author(s):  
D. Sugar ◽  
J. M. Benbow ◽  
K. A. Powers ◽  
S. R. Basile

The most effective nutritional, fungicidal, and biological control treatments previously evaluated for control of postharvest decay in pear were evaluated for 3 years as factorial treatments to determine the best combinations for an integrated program. Calcium chloride sprays during the growing season reduced incidence of side rot in each year and of blue mold in 1 year, while ziram was effective against side rot in 1 year and blue mold in 2 years. Ziram, but not calcium chloride, provided control of gray mold and bull's-eye rot. Application of the yeast Cryptococcus infirmominiatus to pear fruit 1 week before harvest at a concentration of 1.0 to 1.5 × 108 CFU/ml resulted in establishment of large populations of yeast on fruit surfaces, but did not reduce postharvest fungal decay incidence in 3 years of testing. In 1 year, ziram sprays applied 2 weeks before harvest significantly reduced yeast populations on fruit subsequently treated with C. infirmo-miniatus. Sequential treatments with calcium chloride and ziram are indicated in an integrated program to take advantage of their differential effectiveness to broaden the range of control of pear postharvest decay pathogens.


BioControl ◽  
2005 ◽  
Vol 50 (2) ◽  
pp. 331-342 ◽  
Author(s):  
Hong-yin ZHANG ◽  
Xiao-dong ZHENG ◽  
Yu-fang XI

Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 413-418 ◽  
Author(s):  
C. L. Xiao ◽  
R. J. Boal

Phacidiopycnis rot, caused by Phacidiopycnis piri, is a newly recognized postharvest disease in pear fruit (Pyrus communis cv. d'Anjou) in the United States. To determine the prevalence and incidence of this disease, decayed fruit were sampled during packing and repacking operations from four packinghouses in 2001 and 2002. During March to May (repacking) in 2001, Phacidiopycnis rot was found in packed fruit that were stored in cardboard boxes from 22 of 26 grower lots (orchards), and accounted for 5 to 71% of the total decay. Phacidiopycnis rot, gray mold caused by Botrytis cinerea, and blue mold caused by Penicillium spp. accounted for an average of 34.1, 10.3, and 33.6% of decayed fruit from conventional orchards, respectively; and 22.8, 35.7, and 23.5% of decayed fruit from organic orchards, respectively. During November 2001 to January 2002 (packing), Phacidiopycnis rot was observed in fruit that were stored in field bins before packing from 30 of 33 grower lots, accounting for 18.4% of decayed fruit sampled. During March to May in 2002, Phacidiopycnis rot was responsible for 2 to 68% of decayed fruit sampled from 36 of 39 grower lots. Phacidiopycnis rot, gray mold, and blue mold accounted for an average of 19.6, 26.8, and 37.4% of decayed fruit from conventional orchards, respectively; and 42.2, 25.7, and 8.2% of decayed fruit from organic orchards, respectively. Most Phacidiopycnis rot that occurred in field bins before packing appeared to originate from wound infections; whereas after packing, approximately 60 and 30% of Phacidiopycnis rot originated from stem and calyx infections, respectively. This study indicates that Phacidiopycnis rot should be considered one of the targets for control of postharvest diseases in d'Anjou pears in the region.


2005 ◽  
Vol 51 (7) ◽  
pp. 591-598 ◽  
Author(s):  
Hassan-Reza Etebarian ◽  
Peter L Sholberg ◽  
Kenneth C Eastwell ◽  
Ronald J Sayler

Pseudomonas fluorescens isolate 1100-6 was evaluated as a potential biological control agent for apple blue mold caused by Penicillium expansum or Penicillium solitum. Both the wild-type isolate 1100-6 and a genetically modified derivative labeled with the gene encoding the green fluorescent protein (GFP) were compared. The P. fluorescens isolates with or without GFP equally reduced the growth of Penicillium spp. and produced large zones of inhibition in dual culture plate assays. Cell-free metabolites produced by the bacterial antagonists reduced the colony area of Penicillium isolates by 17.3% to 78.5%. The effect of iron chelate on the antagonistic potential of P. fluorescens was also studied. The use of iron chelate did not have a major effect on the antagonistic activity of P. fluorescens. With or without GFP, P. fluorescens significantly reduced the severity and incidence of apple decay by 2 P. expansum isolates after 11 d at 20 °C and by P. expansum and P. solitum after 25 d at 5 °C when the biocontrol agents were applied in wounds 24 or 48 h before challenging with Penicillium spp. Populations of P. fluorescens labeled with the GFP were determined 1, 9, 14, and 20 d after inoculation at 5 °C. The log CFU/mL per wound increased from 6.95 at the time of inoculation to 9.12 CFU/mL (P < 0.05) 25 d after inoculation at 5 °C. The GFP strain did not appear to penetrate deeply into wounds based on digital photographs taken with an inverted fluorescence microscope. These results indicate that P. fluorescens isolate 1100-6 could be an important new biological control for apple blue mold.Key words: Penicillium expansum, P. solitum, postharvest disease, Malus, GFP.


2007 ◽  
Vol 40 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Hongyin Zhang ◽  
Lei Wang ◽  
Ying Dong ◽  
Song Jiang ◽  
Jian Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document