scholarly journals An Analysis of Host Adaptation and Its Relationship with Virulence in Cucumber mosaic virus

2005 ◽  
Vol 95 (7) ◽  
pp. 827-833 ◽  
Author(s):  
Soledad Sacristán ◽  
Aurora Fraile ◽  
José M. Malpica ◽  
Fernando García-Arenal

The host range of a pathogen can have special consequences on its evolution and the evolution of its virulence. For generalists, adaptation to different hosts may be conditioned by different trade-offs in the pathogen's life history and be affected by evolutionary processes that shape pathogen populations. We have examined adaptation of Cucumber mosaic virus (CMV) to different hosts, and analyzed the relationship between host adaptation and virulence. For this, six CMV isolates from central Spain from three different hosts were compared for the ability to multiply and to affect host growth. These analyses were done before and after an experimental evolution process consisting of 10 serial passages in the original host of the isolate. The differential capacity to infect different hosts was compatible with host adaptation. However, the capacity to multiply in different hosts did not provide evidence of host adaptation and was not improved after 10 passages, suggesting that fitness of the natural population of CMV was at, or near to, its maximum. No relationship was found between capacity of multiplication and virulence in any of the three different hosts. These results suggest that the “trade-off” model for the evolution of virulence may not apply to CMV.

2000 ◽  
Vol 90 (5) ◽  
pp. 480-485 ◽  
Author(s):  
Fernando Escriu ◽  
Aurora Fraile ◽  
Fernando García-Arenal

From 1986 to 1992, an epidemic of tomato necrosis caused by Cucumber mosaic virus (CMV) plus CMV satellite RNAs (satRNAs) occurred in eastern Spain. From 1989 onward, the frequency of tomato necrosis di-minshed, and it almost completely disappeared after 1991. Analyses of plants infected with CMV and with CMV satRNA and of the phenotype (necrogenic or nonnecrogenic for tomato) induced by some CMV satRNA variants, showed that the disappearance of tomato necrosis was due to changes in the genetic composition of the satRNA population (i.e., to its evolution toward decreased virulence). Analysis of components of the fitness of satRNA variants, necrogenic or nonnecrogenic for tomato, showed that necrogenic and nonnecrogenic variants did not differ in infectivity or in their accumulation level in tomato and that they represented the same fraction of encapsidated RNA. Other fitness components were positively correlated with the greater virulence of necrogenic variants, in that they were favored in mixed infections with nonnecrogenic variants and were more effectively passed into CMV progeny than were nonnecrogenic variants. On the other hand, necrogenic CMV satRNA variants caused a more pronounced depression in the accumulation of CMV than did nonnecro-genic variants, which could affect the efficiency of aphid transmission. Thus, the evolution of virulence in the CMV satRNA population can be explained by trade-offs between factors that determine virulence and factors that affect transmission, as predicted by theoretical models on the evolution of virulence in parasites.


2011 ◽  
Vol 92 (8) ◽  
pp. 1930-1938 ◽  
Author(s):  
Mónica Betancourt ◽  
Aurora Fraile ◽  
Fernando García-Arenal

Two groups of Cucumber mosaic virus (CMV) satellite RNAs (satRNAs), necrogenic and non-necrogenic, can be differentiated according to the symptoms they cause in tomato plants, a host in which they also differ in fitness. In most other CMV hosts these CMV-satRNA cause similar symptoms. Here, we analyse whether they differ in traits determining their relative fitness in melon plants, in which the two groups of CMV-satRNAs cause similar symptoms. For this, ten necrogenic and ten non-necrogenic field satRNA genotypes were assayed with Fny-CMV as a helper virus. Neither type of CMV-satRNA modified Fny-CMV symptoms, and both types increased Fny-CMV virulence similarly, as measured by decreases in plant biomass and lifespan. Necrogenic and non-necrogenic satRNAs differed in their ability to multiply in melon tissues; necrogenic satRNAs accumulated to higher levels both in single infection and in competition with non-necrogenic satRNAs. Indeed, multiplication of some non-necrogenic satRNAs was undetectable. Transmission between hosts by aphids was less efficient for necrogenic satRNAs as a consequence of a more severe reduction of CMV accumulation in leaves. The effect of CMV accumulation on aphid transmission was not compensated for by differences in satRNA encapsidation efficiency or transmissibility to CMV progeny. Thus, necrogenic and non-necrogenic satRNAs differ in their relative fitness in melon, and trade-offs are apparent between the within-host and between-host components of satRNA fitness. Hence, CMV-satRNAs could have different evolutionary dynamics in CMV host-plant species in which they do not differ in pathogenicity.


1975 ◽  
Vol 23 (3) ◽  
pp. 269-278
Author(s):  
W.M.T.J. de Brouwer ◽  
H.J.M. van Dorst

The results of studies involving aphid trapping and natural virus infection of test plants showed that A. gossypii played an important part in cucumber and gherkin infection by CMV, which occurred most frequently in August. However, only a small percentage of any of the aphids found was responsible for virus transmission. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2020 ◽  
Author(s):  
Lourdes M. Gomez ◽  
Victor A Meszaros ◽  
Wendy C. Turner ◽  
C. Brandon Ogbunugafor

ABSTRACTThe relationship between parasite virulence and transmission is a pillar of evolutionary theory that has specific implications for public health. Part of this canon involves the idea that virulence and free-living survival (a key component of transmission) may have different relationships in different host-parasite systems. Most examinations of the evolution of virulence-transmission relationships—theoretical or empirical in nature—tend to focus on the evolution of virulence, with transmission a secondary consideration. And even within transmission studies, the focus on free-living survival is a smaller subset, though recent studies have examined its importance in the ecology of infectious diseases. Few studies have examined the epidemic-scale consequences of variation in survival across different virulence-survival relationships. In this study, we utilize a mathematical model motivated by aspects of SARS-CoV-2 natural history to investigate how evolutionary changes in survival may influence several aspects of disease dynamics at the epidemiological scale. Across virulence-survival relationships (where these traits are positively or negatively correlated), we found that small changes (5% above and below the nominal value) in survival can have a meaningful effect on certain outbreak features, including the R0, and the size of the infectious peak in the population. These results highlight the importance of properly understanding the mechanistic relationship between virulence and parasite survival, as evolution of increased survival across different relationships with virulence will have considerably different epidemiological signatures.


2007 ◽  
Vol 274 (1611) ◽  
pp. 853-860 ◽  
Author(s):  
Tommaso Pizzari ◽  
Charles K Cornwallis ◽  
David P Froman

When females copulate with multiple males, paternity is determined by the competitive ability of a male to access females and by the ability of its ejaculates to out-compete those of other males over fertilization. The relationship between the social competitiveness of a male and the fertilizing quality of its sperm has therefore crucial implications for the evolution of male reproductive strategies in response to sexual selection. Here, we present a longitudinal experimental study of the relationship between social status and sperm quality. We monitored sperm quality in socially naive male domestic fowl, Gallus gallus domesticus , before and after exposure to a social challenge which comprised two stages. In the first stage, social dominance was established in male pairs divergent in sperm quality, and in the second, social status was experimentally manipulated by re-shuffling males across pairs. We show that sperm quality fluctuates within males both before and after a social challenge. Importantly, such fluctuations followed consistently different patterns in males that displayed different levels of social competitiveness in the social challenge. In particular, following the social challenge, sperm quality dropped in males that won both contests while the sperm quality of males that lost both contests remained constant. Together, these results indicate that males of different social competitiveness are predisposed to specific patterns of fluctuations in sperm quality. These rapid within-male fluctuations may help explain the recent findings of trade-offs between male social and gametic competitive abilities and may help maintain phenotypic variability in these traits.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Sayanta Bera ◽  
Aurora Fraile ◽  
Fernando García-Arenal

ABSTRACTThe acquisition of new hosts provides a virus with more opportunities for transmission and survival but may be limited by across-host fitness trade-offs. Major causes of across-host trade-offs are antagonistic pleiotropy, that is, host differential phenotypic effects of mutations, a Genotype x Environment interaction, and epistasis, a Genotype x Genotype interaction. Here, we analyze if there are trade-offs, and what are the causes, associated with the acquisition by tobacco mild green mosaic virus (TMGMV) of a new host. For this, the multiplication of sympatric field isolates of TMGMV from its wild reservoir hostNicotiana glaucaand from pepper crops was quantified in the original and the heterologous hosts. TMGMV isolates fromN. glaucawere adapted to their host, but pepper isolates were not adapted to pepper, and the acquisition of this new host was associated with a fitness penalty in the original host. Analyses of the collection of field isolates and of mutant genotypes derived from biologically active cDNA clones showed a role of mutations in the coat protein and the 3′ untranslated region in determining within-host virus fitness. Fitness depended on host-specific effects of these mutations, on the genetic background in which they occurred, and on higher-order interactions of the type Genotype x Genotype x Environment. These types of effects had been reported to generate across-host fitness trade-offs under experimental evolution. Our results show they may also operate in heterogeneous natural environments and could explain why pepper isolates were not adapted to pepper and their lower fitness inN. glauca.IMPORTANCEThe acquisition of new hosts conditions virus epidemiology and emergence; hence it is important to understand the mechanisms behind host range expansion. Experimental evolution studies have identified antagonistic pleiotropy and epistasis as genetic mechanisms that limit host range expansion, but studies from virus field populations are few. Here, we compare the performance of isolates of tobacco mild green mosaic virus from its reservoir host,Nicotiana glauca,and its new host, pepper, showing that acquisition of a new host was not followed by adaptation to it but was associated with a fitness loss in the original host. Analysis of mutations determining host-specific virus multiplication identified antagonistic pleiotropy, epistasis, and host-specific epistasis as mechanisms generating across-host fitness trade-offs that may prevent adaptation to pepper and cause a loss of fitness inN. glauca. Thus, mechanisms determining trade-offs, identified under experimental evolution, could also operate in the heterogeneous environment in which natural plant virus populations occur.


2014 ◽  
Vol 10 (11) ◽  
pp. e1004492 ◽  
Author(s):  
Jean Michel Hily ◽  
Adrián García ◽  
Arancha Moreno ◽  
María Plaza ◽  
Mark D. Wilkinson ◽  
...  

Viruses ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1055 ◽  
Author(s):  
Lourdes M. Gomez ◽  
Victor A. Meszaros ◽  
Wendy C. Turner ◽  
C. Brandon Ogbunugafor

The relationship between parasite virulence and transmission is a pillar of evolutionary theory that has implications for public health. Part of this canon involves the idea that virulence and free-living survival (a key component of transmission) may have different relationships in different host–parasite systems. Most examinations of the evolution of virulence-transmission relationships—Theoretical or empirical in nature—Tend to focus on the evolution of virulence, with transmission being a secondary consideration. Even within transmission studies, the focus on free-living survival is a smaller subset, though recent studies have examined its importance in the ecology of infectious diseases. Few studies have examined the epidemic-scale consequences of variation in survival across different virulence–survival relationships. In this study, we utilize a mathematical model motivated by aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) natural history to investigate how evolutionary changes in survival may influence several aspects of disease dynamics at the epidemiological scale. Across virulence–survival relationships (where these traits are either positively or negatively correlated), we found that small changes (5% above and below the nominal value) in survival can have a meaningful effect on certain outbreak features, including R0, and on the size of the infectious peak in the population. These results highlight the importance of properly understanding the mechanistic relationship between virulence and parasite survival, as the evolution of increased survival across different relationships with virulence may have considerably different epidemiological signatures.


Sign in / Sign up

Export Citation Format

Share Document