scholarly journals Characterization of Resistance Mechanisms to Powdery Mildew (Erysiphe betae) in Beet (Beta vulgaris)

2009 ◽  
Vol 99 (4) ◽  
pp. 385-389 ◽  
Author(s):  
Mónica Fernández-Aparicio ◽  
Elena Prats ◽  
Amero A. Emeran ◽  
Diego Rubiales

Beet powdery mildew incited by Erysiphe betae is a serious foliar fungal disease of worldwide distribution causing losses of up to 30%. In the present work, we searched for resistance in a germplasm collection of 184 genotypes of Beta vulgaris including fodder (51 genotypes), garden (60 genotypes), leaf (51 genotypes), and sugar (22 genotypes) beet types. Resistant genotypes were identified in the four beet types under study. In addition, mechanisms underlying resistance were dissected through histological studies. These revealed different resistance mechanisms acting at different fungal developmental stages, i.e., penetration resistance, early and late cell death, or posthaustorial resistance. Most genotypes were able to hamper fungal development at several stages. The later are interesting for breeding aiming to resistance durability. Furthermore, characterization of defense mechanisms will be useful for further cellular and molecular studies to unravel the bases of resistance in this species.

2007 ◽  
Vol 97 (9) ◽  
pp. 1049-1053 ◽  
Author(s):  
Elena Prats ◽  
María J. Llamas ◽  
Diego Rubiales

In this work, we studied the resistance of 277 Medicago truncatula accessions against powdery mildew and further characterized the defense mechanisms of resistant plants. Ten resistant accessions were selected according to macroscopic assessment. Histological studies showed a range of defense mechanisms, acting alone or combined, that impeded fungal development at different stages. Some accessions allowed a reduced spore germination frequency compared with that of the susceptible control. In others, the fungus was arrested at penetration stage due to papilla formation. Epidermal cells of several accessions were penetrated by the fungus but then hypersensitive response (HR) leading to cell death hampered fungal development. In some cases, cell death was very fast and no haustorium could be observed in epidermal cells, whereas in others, haustoria and secondary hyphae indicated a slow HR. Finally, in some accessions in which no HR was observed, colony growth was restricted through posthaustorial defense mechanisms. Characterization of defense mechanisms will be useful for further cellular and molecular studies to unravel the bases of resistance in this species in particular and in legume–powdery mildew interaction in general.


Author(s):  
Lydia I. Rivera-Vargas ◽  
Manuel Pérez-Cuevas ◽  
Irma Cabrera-Asencio ◽  
María R. Suárez-Rozo ◽  
Luz M. Serrato-Díaz

This is the first comprehensive study to identify fungal pathogens of mango (Mangifera indica L.) inflorescences in Puerto Rico. A total of 452 mango inflorescences were collected from four cultivars at seven developmental stages during two blooming seasons. Samples were gathered from the germplasm collection at the Agricultural Experiment Station of the University of Puerto Rico in Juana Díaz, Puerto Rico. Eight different symptoms were observed: cankers, flower abortion, powdery mildew, rachis necrotic lesions, rachis soft rot, tip blight, vascular wilt, and insect perforations with necrotic borders. Necrosis was the most prevalent symptom (47%), followed by powdery mildew (19%) and tip blight (6%). Symptoms of malformation were never observed in the field. Using a modified Horsfall and Barratt scale, data on all mango cultivars pooled from two blooming seasons showed that the full bloom stage, the last inflorescence developmental stage (G), displayed the highest mean disease severity (42.67%). This severity value was significantly higher than those of the other developmental stages evaluated (P<0.05). Early inflorescence developmental stages were asymptomatic or showed the lowest percentage of disease severity. An ANOVA was performed to compare disease severity among all mango cultivars regardless of developmental stage. Results showed that there were significant differences (P<0.05) between mean disease severity of cultivars ‘Parvin’ and ‘Haden’. Mean disease severity was higher in ‘Haden’ (20%) when compared to ‘Parvin’ (10.7%). There were no statistical differences in mean disease severity between cultivars ‘Irwin’, ‘Keitt’ and ‘Parvin’, or between ‘Irwin’, ‘Haden’ and ‘Keitt’. In addition to the powdery mildew caused by Pseudoidium anacardii, 26 genera of fungi, mainly of Ascomycetes, were identified from a total of 569 fungal isolates, from symptomatic and asymptomatic inflorescences. The most common fungi were: Diaporthe spp. (29%), followed by members of the Botryosphaeriaceae (16%), Curvularia spp. (11%) and Fusarium spp. (11%). Many fungal pathogens identified in this study were isolated from asymptomatic tissue, occurring as endophytes or latent pathogens: A. alternata, various members of the Botryosphaeriaceae, C. gloeosporioides complex, Cladosporium spp. and F. decemcellulare. Thus, the use of protectant fungicides will not be as effective as systemics in their control. Correct identification of fungal pathogens affecting mango inflorescences is important when quarantine regulations are applied. In addition, this information will facilitate the development of better management strategies in mango orchards.


2006 ◽  
Vol 125 (3) ◽  
pp. 308-310 ◽  
Author(s):  
M. C. Vaz Patto ◽  
M. Fernandez-Aparicio ◽  
A. Moral ◽  
D. Rubiales

2021 ◽  
Author(s):  
Melanie Massonnet ◽  
Amanda M Vondras ◽  
Noe Cochetel ◽  
Summaira Riaz ◽  
Daniel Pap ◽  
...  

Muscadinia rotundifolia cv. Trayshed is a valuable source of resistance to grape powdery mildew (PM). It carries two PM resistance (R) loci, Run1.2 on chromosome 12 and Run2.2 on chromosome 18. This study identified the nucleotide-binding leucine-rich repeat (NLR) genes composing each R locus and their associated defense mechanisms. Evaluation of PM disease development showed that introgression of both loci confers resistance to PM in a V. vinifera background, but with varying speed and intensity of the response. To better understand the effect of NLR composition on PM resistance, both haplotypes of each R locus were reconstructed and the gene models within each haplotype were manually refined. We found that the number and classes of NLR genes differed between Run1.2 and Run2.2 loci and between the haplotypes of each R locus. In addition, NLR genes composing Run1.2b or Run2.2 loci exhibited different levels of gene expression, pointing to candidate NLR genes responsible for PM resistance in Trayshed. Finally, a transcriptomic analysis that included six additional R loci showed differences in the defense mechanisms associated with Run1.2b and Run2.2 in response to PM and at constitutive level. Altogether, our results reveal that Trayshed's R loci are composed of distinct NLRs that trigger different plant defense mechanisms in response to PM and at constitutive level, which would explain the variation of pathogen restriction between the two loci.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-76 ◽  
Author(s):  
Alison E. Fowler ◽  
Rebecca E. Irwin ◽  
Lynn S. Adler

Parasites are linked to the decline of some bee populations; thus, understanding defense mechanisms has important implications for bee health. Recent advances have improved our understanding of factors mediating bee health ranging from molecular to landscape scales, but often as disparate literatures. Here, we bring together these fields and summarize our current understanding of bee defense mechanisms including immunity, immunization, and transgenerational immune priming in social and solitary species. Additionally, the characterization of microbial diversity and function in some bee taxa has shed light on the importance of microbes for bee health, but we lack information that links microbial communities to parasite infection in most bee species. Studies are beginning to identify how bee defense mechanisms are affected by stressors such as poor-quality diets and pesticides, but further research on this topic is needed. We discuss how integrating research on host traits, microbial partners, and nutrition, as well as improving our knowledge base on wild and semi-social bees, will help inform future research, conservation efforts, and management.


2009 ◽  
Vol 35 (5) ◽  
pp. 786-794
Author(s):  
N PUDAKE Ramesh ◽  
Ming-Ming XIN ◽  
Yu-Jing YIN ◽  
Chao-Jie XIE ◽  
Zhong-Fu NI ◽  
...  

2021 ◽  
Vol 42 (15) ◽  
pp. 5680-5697
Author(s):  
Pâmela A. Pithan ◽  
Jorge R. Ducati ◽  
Lucas R. Garrido ◽  
Diniz C. Arruda ◽  
Adriane B. Thum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document