scholarly journals Molecular Phylogenetic Analyses of Biological Control Strains of Trichoderma harzianum and Other Biotypes of Trichoderma spp. Associated with Mushroom Green Mold

1999 ◽  
Vol 89 (4) ◽  
pp. 308-313 ◽  
Author(s):  
M. D. Ospina-Giraldo ◽  
D. J. Royse ◽  
X. Chen ◽  
C. P. Romaine

A polymerase chain reaction-amplified DNA containing the internal transcribed spacer (ITS)-1, 5.8S, and ITS-2 regions of the nuclear ribosomal DNA transcriptional unit was sequenced for 81 isolates of Trichoderma spp. associated with mushroom culture or used for biological control of plant pathogens. Phylogenetic analyses revealed that the biocontrol isolates were more closely related to an isolate of T. harzianum biotype 1 (Th1) than to the aggressive biotypes 2 and 4. Th1 has been isolated from mushroom compost but is not the cause of widespread green mold epidemics that have occurred during the last 12 years in Europe and North America. Three isolates of T. harzianum obtained from shiitake (Lentinula edodes; Shi1B and S3-96) and maitake (Grifola frondosa; Mai1) substrates were placed within the biocontrol group. We also found evidence suggesting that some isolates of T. harzianum originally identified as Th4 from Pennsylvania are more closely related to Th2 from Europe. Finally, considering the wide range in sequence distribution of our samples, we propose that the consensus sequence found in this investigation be used as the reference sequence for further studies involving the identification and taxonomy of T. harzianum.

2020 ◽  
Vol 5 (1) ◽  
pp. 404-440 ◽  
Author(s):  
Mehrdad Alizadeh ◽  
Yalda Vasebi ◽  
Naser Safaie

AbstractThe purpose of this article was to give a comprehensive review of the published research works on biological control of different fungal, bacterial, and nematode plant diseases in Iran from 1992 to 2018. Plant pathogens cause economical loss in many agricultural products in Iran. In an attempt to prevent these serious losses, chemical control measures have usually been applied to reduce diseases in farms, gardens, and greenhouses. In recent decades, using the biological control against plant diseases has been considered as a beneficial and alternative method to chemical control due to its potential in integrated plant disease management as well as the increasing yield in an eco-friendly manner. Based on the reported studies, various species of Trichoderma, Pseudomonas, and Bacillus were the most common biocontrol agents with the ability to control the wide range of plant pathogens in Iran from lab to the greenhouse and field conditions.


Mycobiology ◽  
2020 ◽  
Vol 48 (4) ◽  
pp. 313-320
Author(s):  
Song Hee Lee ◽  
Hwa Jin Jung ◽  
Seung-Beom Hong ◽  
Jong In Choi ◽  
Jae-San Ryu

2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Ria Mukhopadhyay ◽  
Deepak Kumar

Abstract Background Agriculture is an indispensable part of any country to feed the millions of people but it is under constant threat of pests. To protect the crops from this huge yield loss recently, chemical pesticides are used. Though chemical pesticides have shown effective results in killing the crop pests, it causes negative impact on the environment as well as humans. So to find an eco-friendly alternative, biological control methods are being used. Main body Biological control is a great renaissance of interest and research in microbiological balance to control soil-borne plant pathogens and leads to the development of a better farming system. In biological control, genus Trichoderma serves as one of the best bioagents, which is found to be effective against a wide range of soil and foliar pathogens. Genus Trichoderma is a soil inhabiting green filamentous fungus, which belongs to the division Ascomycota. The efficacy of Trichoderma depends on many abiotic parameters such as soil pH, water retention, temperature and presence of heavy metals. The biocontrol potential of Trichoderma spp. is due to their complex interaction with plant pathogens either by parasitizing them, secreting antibiotics or by competing for space and nutrients. During mycoparasitic interactions, production of hydrolytic enzymes such as glucanase, chitinase and protease and also signalling pathways are initiated by Trichoderma spp. and the important ones are Heterotrimeric G protein, MAP kinase and cAMP pathway. G protein and MAPK are mainly involved in secretion of antifungal metabolites and the formation of infection structures. cAMP pathway helps in the condition and coiling of Trichoderma mycelium on pathogenic fungi and inhibits their proliferation. Short conclusion Trichoderma being an efficient biocontrol agent, their characteristics and mechanisms should be well understood to apply them in field conditions to restrict the proliferation of phytopathogens.


2020 ◽  
Vol 13 (1) ◽  
pp. 222-226
Author(s):  
Henny V.G. Makal ◽  
Max M. Ratulangi ◽  
Denny S. Sualang

The objectives of this study are: (1) to inventory Trichoderma spp. in North Minahasa District, South Minahasa District, and Tomohon City-Minahasa District, (2) inventory of Trichoderma spp. in the rhizosphere of cultivated and fallow gardens, and (3) calculate the population density of Trichoderma spp. all soil samples. The scope of this study is the biological control of plant pathogens, induce plant resistance, and biological fertilizer production. Trichoderma isolation spp. has been carried out by dilution method and cultured on PDA + antibiotics. Population density of Trichoderma spp. calculated using the plate calculation method. Identification of this species function based on the color and patterns of sporulation in the colony; hyphae and clamydospores; conidiophores; and phialides and phialospores. Trichoderma species found in North Minahasa District were T. harzianum, T. koningii, and T. viride; in South Minahasa District, T. koningii and T. viride; and in Tomohon City-Minahasa District, T. koningii and T. viride. In fallow gardens were T. harzianum, T. koningii, and T. viride, and in cultivated gardens were T. koningii and T. viride. Population densities of Trichoderma sp. in South Minahasa District, North Minahasa District, and Tomohon City-Minahasa District, respectively 1,363.64, 466.67, and 26.67 CFU / g soil.


2001 ◽  
Vol 91 (9) ◽  
pp. 905-912 ◽  
Author(s):  
P. D. Collopy ◽  
M. L. Largeteau-Mamoun ◽  
C. P. Romaine ◽  
D. J. Royse

Molecular phylogenetic analyses were performed on 40 isolates of Verticillium fungicola collected from various Pennsylvania mushroom farms in 1999 and 28 isolates of Verticillium spp. collected during the last 50 years from various geographic locations. Sequence analysis of internal transcribed spacers 1 and 2 (ITS1 and ITS2) and 5.8S regions of the nuclear ribosomal DNA (rDNA) transcriptional unit and analysis of random amplified polymorphic DNA (RAPD) data were performed for the 68 isolates of Verticillium spp. Identical rDNA sequences were obtained for all 40 Pennsylvania isolates collected during 1999, 13 North American isolates collected during the last 50 years, and the ex-type strain of V. fungicola var. aleophilum. Sequence analysis of European isolates revealed a close relationship to the ex-type strain V. fungicola var. fungicola. No European-like isolates of V. fungicola var. fungicola were detected in the collection of North American isolates examined. Results from six decamer RAPD primers strongly indicate the presence of a clonal population of V. fungicola among Pennsylvania isolates. In addition, RAPD data delineated a Korean isolate (DC130) and ex-type strain V. fungicola var. aleophilum from the North American group. Virulence assays, based on spore inoculation of mushroom pilei, revealed variation corresponding to each neighbor-joining and RAPD grouping. All isolates with rDNA sequence and RAPD grouping similarity to ex-type strains V. fungicola var. aleophilum and V. fungicola var. fungicola displayed the highest level of virulence. Based on rDNA sequence and RAPD analyses, isolates displaying reduced or no virulence were distantly related to these two varieties. All results obtained for the analyses of ex-type strain V. fungicola var. flavidum suggested that this fungal isolate should not be considered a variety of V. fungicola, but rather a distinct species.


MycoKeys ◽  
2021 ◽  
Vol 78 ◽  
pp. 49-77
Author(s):  
Shengting Huang ◽  
Jiwen Xia ◽  
Xiuguo Zhang ◽  
WenXiu Sun

Species of Diaporthe have often been reported as plant pathogens, endophytes or saprobes, commonly isolated from a wide range of plant hosts. Sixteen strains isolated from species of ten host genera in Yunnan Province, China, represented three new species of Diaporthe, D. chrysalidocarpi, D. machili and D. pometiae as well as five known species D. arecae, D. hongkongensis, D. middletonii, D. osmanthi and D. pandanicola. Morphological comparisons with known species and DNA-based phylogenies based on the analysis of a multigene (ITS, TUB, TEF, CAL and HIS) dataset support the establishment of the new species. This study reveals that a high species diversity of Diaporthe with wide host ranges occur in tropical rainforest in Yunnan Province, China.


MycoKeys ◽  
2019 ◽  
Vol 59 ◽  
pp. 67-94 ◽  
Author(s):  
Haiyan Zhu ◽  
Meng Pan ◽  
Guido Bonthond ◽  
Chengming Tian ◽  
Xinlei Fan

Diaporthales is a fungal order comprising important plant pathogens, saprobes and endophytes on a wide range of woody hosts. It is often difficult to differentiate the pathogens in this order, since both the morphology and disease symptoms are similar among the various species. In the current study, we obtained 15 representative diaporthalean isolates from six tree hosts belonging to plant families Betulaceae, Fagaceae, Juglandaceae, Rosaceae, and Ulmaceae from Mount Dongling in China. Six species were identified residing in four families of Diaporthales (Diaporthaceae, Erythrogloeaceae, Juglanconidaceae and Melanconidaceae). Based on morphological comparison and the phylogenetic analyses of partial ITS, LSU, cal, his3, rpb2, tef1-α and tub2 gene sequences, we identified five known species (Diaporthe betulina, D. eres, D. rostrata, Juglamconis oblonga and Melanconis stilbostoma) and one novel species (Dendrostoma donglinensis). These results represent the first study of diaporthalean fungi associated with canker and dieback symptoms from Mount Dongling in Beijing, China.


2021 ◽  
Author(s):  
Amar Bahadur

Fusarium spp. is one of the most economically important plant pathogens causing a wide range of plant diseases with significant crop losses globally. Fusarium wilt is a major problem all over the world. Fusarium oxysporum, Fusarium solani, Fusarium fujikuroi are economic importance species in worldwide. Fusarium solani causing disease in many agriculturally crops and favored by high temperatures and warm moist soils. The fungus produces three types of asexual spores; microconidia, macroconidia and chlamydospores serve as propagules in infecting host plants and found endophytes and saprophytes. The color of the colony, length and shape of the macroconidia, the number shape of microconidia and the presence or absence of chlamydospores are key features for the differentiation of Fusarium species. Pathogens, forms over 100 formae speciales cause disease in dicot and monocot plant species and infecting a variety of hosts. Vegetative compatibility Groups (VCG) is used to differentiate their races. Resistant cultivars and bio-control agents (Trichoderma spp., and Psedomonas spp.) have been used to manage the disease.


2015 ◽  
Vol 55 (2) ◽  
pp. 198-211 ◽  
Author(s):  
Mahdi Arzanlou ◽  
Mounes Bakhshi ◽  
Keivan Karimi ◽  
Mohsen Torbati

Abstract The genus Colletotrichum comprises a number of plant pathogens of major importance which cause anthracnose diseases on a wide range of woody and herbaceous plants worldwide. With the advent of molecular studies, it has been shown that most of the previously known species e.g. C. boninense, C. acutatum, and C. gloeosporioides have been split into several species. In the present study, the identity of Colletotrichum isolates from the northern and northwestern zone of Iran were determined based on multi-gene phylogenetic analyses. Phylogenetic analysis based on a combination of internal transcribed spacer (ITS), beta tubulin (TUB), histone H3 (HIS), calmodulin (CAL), and actin (ACT) loci, clustered our isolates into three clades, including C. salicis on Salix sp., Colletotrichum sp. (C. fuscum sensu lato) within the C. destructivum species complex on Viola sp., and C. fructicola on Citrus sinensis, Malus domestica, Gleditsia caspica, and Sambucus ebulus. These three species are new for mycobiota of Iran. According to these results, Viola sp. from West Azerbaijan (Khoy-Firouragh) is a new host for Colletotrichum sp. in the C. destructivum species complex. Furthermore, C. sinensis from Mazandaran (Behshahr), and G. caspica, and S. ebulus from Guilan (Talesh), are new host records for C. fructicola.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1071
Author(s):  
Evgeniy S. Balakirev ◽  
Alexandra Yu. Kravchenko ◽  
Alexander A. Semenchenko

Sculpin fishes belonging to the family Cottidae represent a large and complex group, inhabiting a wide range of freshwater, brackish-water, and marine environments. Numerous studies based on analysis of their morphology and genetic makeup frequently provided controversial results. In the present work, we sequenced complete mitochondrial (mt) genomes and fragments of nuclear ribosomal DNA (rDNA) of the fourhorn sculpin Myoxocephalus quadricornis and some related cottids to increase the power of phylogenetic and taxonomic analyses of this complex fish group. A comparison of the My. quadricornis mt genomes obtained by us with other complete mt genomes available in GenBank has revealed a surprisingly low divergence (3.06 ± 0.12%) with Megalocottus platycephalus and, at the same time, a significantly higher divergence (7.89 ± 0.16%) with the species of the genus Myoxocephalus. Correspondingly, phylogenetic analyses have shown that My. quadricornis is clustered with Me. platycephalus but not with the Myoxocephalus species. Completely consistent patterns of divergence and tree topologies have been obtained based on nuclear rDNA. Thus, the multi-gene data in the present work indicates obvious contradictions in the relationships between the Myoxocephalus and Megalocottus species studied. An extensive phylogenetic analysis has provided evidence for a closer affinity of My. quadricornis with the species of the genus Megalocottus than with the species of the genus Myoxocephalus. A recombination analysis, along with the additional GenBank data, excludes introgression and/or incorrect taxonomic identification as the possible causative factors responsible for the observed closer affinity between the two species from different genera. The above facts necessitate realignment of the genera Myoxocephalus and Megalocottus. The genetic data supports the two recognized genera, Myoxocephalus and Megalocottus, but suggests changing their compositions through transferring My. quadricornis to the genus Megalocottus. The results of the present study resolve the relationships within a complex group of sculpin fishes and show a promising approach to phylogenetic systematics (as a key organizing principle in biodiversity research) for a better understanding of the taxonomy and evolution of fishes and for supplying relevant information to address various fish biodiversity conservation and management issues.


Sign in / Sign up

Export Citation Format

Share Document