scholarly journals Characterization of Synergy Between Cucumber mosaic virus and Potyviruses in Cucurbit Hosts

2002 ◽  
Vol 92 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Yongzeng Wang ◽  
Victor Gaba ◽  
Jie Yang ◽  
Peter Palukaitis ◽  
Amit Gal-On

Mixed infections of cucurbits by Cucumber mosaic virus (CMV) and potyviruses exhibit a synergistic interaction. Zucchini squash and melon plants coinfected by the potyvirus Zucchini yellow mosaic virus (ZYMV) and either Fny-CMV (subgroup IA) or LS-CMV (subgroup II) displayed strong synergistic pathological responses, eventually progressing to vascular wilt and plant death. Accumulation of Fny- or LS-CMV RNAs in a mixed infection with ZYMV in zucchini squash was slightly higher than infection with CMV strains alone. There was an increase in CMV (+) strand RNA levels, but no increase in CMV (-) RNA3 levels during mixed infection with ZYMV. Moreover, only the level of capsid protein from LS-CMV increased in mixed infection. ZYMV accumulated to similar levels in singly and mixed infected zucchini squash and melon plants. Coinfection of squash with the potyvirus Watermelon mosaic virus (WMV) and CMV strains increased both the Fny-CMV RNA levels and the LS-CMV RNA levels. However, CMV (-) strand RNA3 levels were increased little or not at all for CMV on coinfection with WMV. Infection of CMV strains (LS and Fny) containing satellite RNAs (WL47-sat RNA and B5*-sat RNA) reduced the accumulation of the helper virus RNA, except when B5*-sat RNA was mixed with LS- CMV. However, mixed infection containing ZYMV and the CMV strains with satellites reversed the suppression effect of satellite RNAs on helper virus accumulation and increased satellite RNA accumulation. The synergistic interaction between CMV and potyviruses in cucurbits exhibited different features from that documented in tobacco, indicating there are differences in the mechanisms of potyvirus synergistic phenomena.

2011 ◽  
Vol 26 (4) ◽  
pp. 325-336 ◽  
Author(s):  
Ana Vucurovic ◽  
Aleksandra Bulajic ◽  
Ivana Stankovic ◽  
Danijela Ristic ◽  
Janos Berenji ◽  
...  

Cucumber mosaic virus (CMV) is considered one of the most economically important plant viruses and has a worldwide distribution and a very wide host range including plants from family Cucurbitaceae. In Serbia, on cucurbits CMV was detected in single and mixed infections with Zucchini yellow mosaic virus (ZYMV) and Watermelon mosaic virus (WMV). Viruses, including CMV, are constantly present in cucurbit crops, but their frequency changes by year and locality. Surveys and sample collections were conducted in cucurbit crops in the period from 2008 to 2009 at 15 localities in Vojvodina province, and sample testing was carried out using the DAS-ELISA method and commercially available antisera for six economically most important cucurbit viruses. In 2008, a total of 51 samples were collected from 13 cucurbit crops of oilseed pumpkin Olinka variety, squash, and bottle gourd and CMV was detected in a total of 55% of tested samples with symptoms of viral infection. The most common infectious type was mixed infection with ZYMV and WMV (35.3%), and then mixed infection with ZYMV (17.7%) and WMV (2%). A total of 599 symptomatic samples of oilseed pumpkin Olinka variety, zucchini squash varieties Beogradska and Tosca, squash, and winter squash were collected in 15 cucurbits crops in 2009. CMV was present in 4.4% of total collected samples, in single infections in 1.3%, and in mixed with WMV or ZYMV in 1.3%, and 1.8%. Five CMV isolates were obtained by mechanical inoculations of N. glutinosa and one of them was selected for further biological characterization. Test plants which were described to be hosts of CMV expressed symptoms characteristic for those caused by CMV after inoculations by isolate 115-08. CMV specific primers Au1u/Au2d were used to amplify an 850 bp fragment using RT-PCR method. Amplified fragment encodes the entire viral coat protein (CP) gene and partial 5? and 3? UTRs of two selected CMV isolates. Amplified fragments were sequenced and deposited in the NCBI, where they were assigned accession numbers, HM065510 (115-08) and HM065509 (151-08). The sequences of CMV isolates from Serbia shared the highest nucleotide and amino acid identity with isolates from subgroup IA, from 99.5 to 97.4% and 99.1 to 97.4%, and the lowest identities were with the subgroup II isolates from 66.9 to 64, 5%, from 75.8 to 74.1%.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 471B-471
Author(s):  
S. Alan Walters ◽  
Jeff D. Kindhart ◽  
Houston A. Hobbs ◽  
Darin M. Eastburn

Cucurbit viruses are a major hindrance to cucurbit production in southern Illinois, often rendering cucumber and summer squash fruit unmarketable. Specific viruses infecting cucurbits in the region need to be determined since this would enable growers to make better decisions on virus disease management. Leaf samples of various cucurbit vegetables that had symptoms of viral infection were collected from grower fields during the 1998 and 1999 growing seasons to determine the predominant cucurbit viruses present. Samples were assayed for the presence of five individual viruses: cucumber mosaic virus (CMV), papaya ringspot virus (PRSV, formerly watermelon mosaic virus-1), squash mosaic virus (SqMV), watermelon mosaic virus (WMV, formerly watermelon mosaic virus-2), and zucchini yellow mosaic virus (ZYMV). Results from the two years indicated that WMV was the most prevalent virus in southern Illinois. Cucumber mosaic virus was found both years, but only in a low percentage of samples collected each year. Two cucurbit viruses, PRSV and ZYMV, were each identified only in one sample during the 1998 growing season, and neither were found in any of the samples collected during 1999. Squash mosaic virus was not identified in any of the samples collected during 1998; however, for the 1999 growing season, SqMV was identified in 19% of the samples collected, primarily from those samples of transgenic squash that were showing symptoms of virus infection.


2001 ◽  
Vol 26 (1) ◽  
pp. 90-92 ◽  
Author(s):  
MARIA C. C. L. MOURA ◽  
J. ALBERSIO A. LIMA ◽  
VANÚZIA B. OLIVEIRA ◽  
M. FÁTIMA B. GONÇALVES

Os vírus representam sérios obstáculos para o sucesso da olericultura no mundo inteiro, constituindo a identificação daqueles de maior incidência numa região, papel fundamental para o estabelecimento de estratégias de controle. Visitas de campo foram realizadas a plantios de espécies de cucurbitáceas em áreas produtoras do Maranhão e amostras foliares foram coletadas de 118 plantas com sintomas ou suspeita de sintomas de vírus, sendo 46 de abóbora (Cucurbita moschata), 30 de melancia (Citrullus lanatus), 23 de maxixe (Cucumis anguria), 13 de pepino (C. sativus) e seis de melão (C. melo). Todas as amostras foram testadas contra anti-soros específicos para os principais vírus das famílias Bromoviridae, Comoviridae e Potyviridae que infetam cucurbitáceas no Nordeste, mediante "enzyme-linked immunosorbent assay" (ELISA) indireto e dupla difusão em agar. Os resultados revelaram a identificação sorológica de Papaya ringspot vírus (PRSV) em 64,4% das amostras analisadas, seguido de Watermelon mosaic virus-2 (WMV-2) em 15,2%, Cucumber mosaic virus (CMV) em 6,8%, Squash mosaic virus (SqMV) em 3,4% e Zucchini yellow mosaic virus (ZYMV) em 3,4%. Este levantamento confirma a predominância do PRSV em espécies de cucurbitáceas cultivadas no estado do Maranhão.


Author(s):  
M. G. F. O. Soares ◽  
J. A. Soares ◽  
M. A. Cezar ◽  
T. A. L. Cardoso ◽  
J. A. A. Lima

<p>Por constituírem uma importante fonte de alimento,<strong> </strong>plantações de melancia e abóbora são comumente cultivadas no sertão paraibano, porém pouco se sabe sobre a ocorrência de patógenos causadores de doenças, os quais limitam a sua produtividade e renda aos produtores. Visando obter informações sobre a ocorrência dos patógenos virais e fúngicos em cultivos de abóbora e melancia situados em municípios produtores no sertão da Paraíba, amostras coletadas com sintomas de mosaico e deformação foliar, típicos de doenças virais foram analisadas pela técnica sorológica “enzime linked immuno sorbentassay” (Elisa) indireto para <em>Papaya ring spot virus, </em>type watermelon (PRSV-W), <em>Watermelon mosaic virus </em>(WMV), <em>Zucchini yellow mosaic virus </em>(ZYMV) e <em>Cucumber mosaic virus </em>(CMV). O teste de dupla difusão em Agar foi utilizado para verificar a presença de <em>Squash mosaic virus </em>(SqMV). Em contrapartida, amostras coletadas com sintomas de doenças fúngicas foram analisadas pelo isolamento do patógeno e visualização de suas características morfológicas em microscópio óptico. Em abóbora, houve prevalência dos vírus ZYMV e PRSV-W em infecções simples e mistas, e maior incidência dos fungos <em>Cladosporium</em> spp., e <em>Alternaria</em> spp. Em melancia detectou-se<em> </em>infecção simples e mistas das espécies PRSV-W, WMV e ZYMV, e maior freqüência de <em>Fusarium</em> spp. e <em>Alternaria</em> spp.. Não foram detectados os vírus CMV e SqMV. Os resultados obtidos revelam a ocorrência de vários patógenos fúngicos e viróticos em cultivos de abóbora e melancia situados no sertão da Paraíba e ressaltam a importância da utilização de estratégias de manejo que reduzem os danos ocasionados por esses patógenos.</p><p align="center"><strong><em>Occurrence of pathogens in watermelon and pumpkin crops in the State of Paraiba</em></strong></p><p><strong>Abstract:</strong> By constitute an important food source, watermelon and pumpkin plantations are commonly grown on Paraíba<strong> </strong>backlands, but little is known about the occurrence of disease-causing pathogens, which limit their productivity and income to producers. With objective to get information about the viral and fungal pathogens occurrence in pumpkin and watermelon crops in producing counties located in the backlands of Paraiba, samples with symptoms of mosaic and leaf distortion, typical of viral etiology of disease were collected and analyzed by "Enzyme linked immune sorbentassay" (Elisa) Indirect for species <em>Papaya ring spot virus</em>, type watermelon (PRSV-W), <em>Watermelon mosaic virus </em>(WMV), <em>Zucchini yellow mosaic virus</em> ( ZYMV) and <em>Cucumber mosaic virus</em> (CMV). The double diffusion test in Agar was used to verify the presence of <em>Squash mosaic virus</em> (SqMV). In contrast, samples collected with fungal disease symptoms were analyzed based on the isolation of the pathogen and viewing their morphological characteristics under an optical microscope. In pumpkin, there was prevalence of ZYMV and PRSV-W in single and mixed infections, and higher incidence of <em>Cladosporium</em> spp. and <em>Alternaria</em> spp. On the other hand, in watermelon was detected single and mixed infections of PRSV-W, WMV and ZYMV species, and higher frequency of <em>Fusarium </em>spp. and <em>Alternaria</em> spp.. Were not detected the virus CMV and SqMV. The results show the occurrence of various fungal and viral pathogens in pumpkin and watermelon crops located in the backlands of Paraiba and emphasize the importance of using management strategies that reduce the damage caused by these pathogens.</p>


2004 ◽  
Vol 29 (6) ◽  
pp. 687-689 ◽  
Author(s):  
Bernardo A. Halfeld-Vieira ◽  
Najara F. Ramos ◽  
Francisco A.C. Rabelo Filho ◽  
M. Fátima B. Gonçalves ◽  
Katia L. Nechet ◽  
...  

No período de maio de 2003 a março de 2004, foram coletadas amostras foliares de plantas de melancia (Citrullus lanatus) de 21 campos de cultivo de cucurbitáceas, no Estado de Roraima. As amostras exibiam diferentes sintomas de vírus e foram levadas para o Laboratório de Virologia Vegetal da Universidade Federal do Ceará para serem testadas por "enzyme linked immunosorbent assay" (Elisa)-indireto, contra anti-soros específicos para Cucumber mosaic virus (CMV), Papaya ringspot virus estirpe melancia (PRSV-W), Watermelon mosaic virus (WMV) e Zucchini yellow mosaic virus (ZYMV). Nos testes de Elisa, utilizou-se o conjugado universal, anti-imunoglobulina (IgG) de coelho produzida em cabra conjugada à enzima fosfatase alcalina. Todas as amostras foram testadas, também, por dupla difusão contra o anti-soro para Squash mosaic virus (SqMV). Os resultados indicaram a presença do PRSV-W em 84,2% das amostras coletadas em maio de 2003, em 7,1% das amostras coletadas em dezembro de 2003 e em 55,6% das amostras coletadas em março de 2004. A presença do ZYMV foi observada em 10,5% das amostras coletadas em maio de 2003, 21,4% das amostras coletadas em dezembro de 2003 e em 25,9% das amostras de março de 2004. O WMV foi detectado somente em oito das amostras coletadas em março de 2004 (29,6%). Os resultados desta pesquisa confirmam a ampla dispersão do PRSV-W em cultivos de cucurbitáceas no território brasileiro e a preocupante expansão do ZYMV em razão dos elevados prejuízos que o mesmo tem causado em outras partes do mundo.


2008 ◽  
Vol 34 (2) ◽  
pp. 183-185 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Jorge Alberto Marques Rezende ◽  
Valdir Atsushi Yuki ◽  
Sônia Maria de Stefano Piedade

The main objective of this work was to investigate the ability of Aphis gossypii and Myzus persicae to transmit Cucumber mosaic virus (CMV) singly and mixed with two potyviruses (Papaya ringspot virus - type W, PRSV-W and Zucchini yellow mosaic virus, ZYMV), to zucchini squash plants (Cucurbita pepo). The results showed that the potyviruses in general were more efficiently transmitted by both species of aphids as compared to CMV. The transmission of PRSV-W, ZYMV and CMV separately was more efficient than in mixture.


Plant Disease ◽  
2003 ◽  
Vol 87 (4) ◽  
pp. 341-344 ◽  
Author(s):  
M. A. Sevik ◽  
M. Arli-Sokmen

To detect cucurbit viruses and determine their incidence, surveys were conducted in 45 fields in 18 villages in Samsun province, Turkey from July to October in 1999 and 2000. Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Cucumber mosaic virus (CMV) were detected in cucurbits after analyzing 165 samples by enzyme-linked immunosorbent assay. WMV, ZYMV, and CMV were detected in 53.9, 38.8, and 20.6% of samples tested, respectively. ZYMV and WMV infections were detected in all cucurbit species, but CMV was not detected in any samples of watermelon and pumpkin.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 380-380 ◽  
Author(s):  
N. Dukić ◽  
B. Krstić ◽  
I. Vico ◽  
J. Berenji ◽  
B. Duduk

During a cucurbit disease survey in August 2004, severe symptoms resembling those caused by viruses were observed on bottlegourd (Lagenaria siceraria (Molina) Standl.) in the Vojvodina region of Serbia. Symptoms included stunting, mosaic, green veinbanding, blistering, yellowing, chlorotic spots, leaf deformation, and fruit distortion. Leaf samples from 25 symptomatic plants were collected from two localities for virus identification using mechanical transmission and serological testing. Crude sap extract from leaf samples was mechanically inoculated onto bottlegourd and pumpkin (Cucurbita pepo) under greenhouse conditions. Field-collected bottlegourd and inoculated plants were tested using double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISA). Positive reactions were obtained on collected and inoculated plants with polyclonal antiserum (Loewe Biochemica, Sauerlach, Germany) to Zucchini yellow mosaic virus(ZYMV) in 23 samples, with antiserum to Watermelon mosaic virus (WMV) in eight samples, and with antiserum to Cucumber mosaic virus (CMV) in seven samples. Each of the three viruses was detected in single as well as in mixed infections with the other two viruses. Biological characterization of viruses detected in single infections was done on the following indicator plants: Chenopodium amaranticolor, C. quinoa, Cucumis sativus, Cucumis melo, Citrullus lanatus, Nicotiana glutinosa, and N. tabacum cv. Samsun. The symptoms observed on indicator plants for each isolate corresponded to the results of DAS-ELISA (2,3). All three viruses are known to be important pathogens of cucurbit plants and were previously reported in pumpkin in Serbia (1). To our knowledge, this is the first report of ZYMV, WMV, and CMV in bottlegourd in Serbia. References: (1) N. Dukić et al. J. Agric. Sci. 47:149, 2002. (2) D. E. Lesemann et al. Phytopathol. Z. 108:304, 1983. (3) H. Rahimian and K. Izadpanah. Phytopathol. Z. 92:305, 1978.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7930
Author(s):  
Yi Wang ◽  
Pu Zhu ◽  
Qin Zhou ◽  
Xiaojun Zhou ◽  
Ziqing Guo ◽  
...  

The genus Cucurbita comprises many popular vegetable and ornamental plants, including pumpkins, squashes, and gourds, that are highly valued in China as well as in many other countries. During a survey conducted in Zhejiang province, Southeast China in 2016, severe symptoms of viral infection were observed on Cucurbita maxima Duch. ex Lam. Diseased plants showed symptoms such as stunting, mosaicking, Shoe string, blistering, yellowing, leaf deformation, and fruit distortion. Approximately, 50% of Cucurbita crops produced in Jinhua were diseased, causing an estimated yield loss of 35%. In this study, we developed a method using all known virus genomes from the NCBI database as a reference to map small RNAs to develop a diagnostic tool that could be used to diagnose virus diseases of C. maxima. 25 leaf samples from different symptomatic plants and 25 leaf samples from non-symptomatic plants were collected from the experimental field of Jihua National Agricultural Technology Garden for pathogen identification. Small RNAs from each set of three symptomatic and non-symptomatic samples were extracted and sequenced by Illumina sequencing. Twenty-four different viruses were detected in total. However, the majority of the small RNAs were from Zucchini yellow mosaic virus (ZYMV), Watermelon mosaic virus (WMV), and Cucumber mosaic virus (CMV). Mixed infections of these three viruses were diagnosed in leaf samples from diseased plants and confirmed by reverse transcription PCR (RT-PCR) using primers specific to these three viruses. Crude sap extract from symptomatic leaf samples was mechanically inoculated back into healthy C. maxima plants growing under greenhouse conditions. Inoculated plants developed the same disease symptoms as those observed in the diseased plants and a mixed infection of ZYMV, WMV, and CMV was detected again by RT-PCR, thus fulfilling Koch’s postulates. The diagnostic method developed in this study involves fewer bioinformatics processes than other diagnostic methods, does not require complex settings for bioinformatics parameters, provides a high level of sensitivity to rapidly diagnose plant samples with symptoms of virus diseases and can be performed cheaply. This method therefore has the potential to be widely applied as a diagnostic tool for viruses that have genome information in the NCBI database.


Sign in / Sign up

Export Citation Format

Share Document