scholarly journals Host Genetic Effect on Deoxynivalenol Accumulation in Fusarium Head Blight of Barley

2004 ◽  
Vol 94 (7) ◽  
pp. 766-771 ◽  
Author(s):  
K. P. Smith ◽  
C. K. Evans ◽  
R. Dill-Macky ◽  
C. Gustus ◽  
W. Xie ◽  
...  

One of the major concerns with Fusarium head blight (FHB) of barley is the potential health risks to livestock and humans through the accumulation of the mycotoxin deoxynivalenol (DON) in infected grain. To define the role of the host in DON accumulation during the early stages of disease development, we conducted a series of greenhouse experiments. We inoculated single spikelets of greenhouse-grown plants with Fusarium graminearum, moved the plants to a dew chamber, and harvested the inoculated spikelets after 72 h for DON analysis. We conducted a quantitative trait locus (QTL) analysis using a genetic mapping population, constructed with the parents Stander and Frederickson, that segregated for DON accumulation after single-spikelet inoculation in two experiments. A single QTL on chromosome 3 explained 18 and 35% of the phenotypic variation in the two experiments. To validate this QTL for DON accumulation, we used a DNA marker to select near-isogenic lines from a family from the mapping population that was segregating at this QTL. Disease symptom development was similar between the nearisogenic lines; however, the mean DON concentration of the lines homozygous for the allele from the high DON parent was 2.5-fold more than the lines homozygous for the alternate allele. A time course experiment showed that this effect on toxin accumulation was observed at 10 days post inoculation. The near-isogenic lines developed in this study should prove useful for further exploration of the role of DON in FHB.

2008 ◽  
Vol 88 (4) ◽  
pp. 789-797 ◽  
Author(s):  
H. Hamzehzarghani ◽  
V. Paranidharan ◽  
Y. Abu-Nada ◽  
A. C. Kushalappa ◽  
O. Mamer ◽  
...  

The resistance in wheat to fusarium head blight (FHB) is controlled by several quantitative trait loci (QTLs), which are mainly expressed as two different types of resistance. The objective of this study was to assess the potential of a metabolomics approach to identify resistance-related metabolites associated with a QTL that confers resistance to FHB. Two near isogenic lines (NIL), with alternate alleles for the FHB resistance/susceptibility QTL on chromosome 2DL, were grown under greenhouse conditions and spikelets were inoculated with F. graminearum. Metabolites were extracted from the rachis and spikelets using a mixture of methanol-water and chloroform, and subsequently analyzed using GC/MS. Compound identification and quantification were achieved using AMDIS, GMD and NIST libraries, and MET-IDEA as the software platform. A total of 182 components were detected. A t-test of the quantities of these metabolites identified 27 resistance-related (RR) metabolites, including 22 constitutive (RRC) and 8 induced (RRI), with three common metabolites. Canonical discriminant analysis was used to classify treatments and to identify the associated metabolic functions. The putative metabolic pathways linking the RR-metabolites identified here are discussed. Key words: Functional genomics, metabolomics, fusarium head blight, Triticum aestivum, Fusarium graminearum


2004 ◽  
Vol 39 (7) ◽  
pp. 625-630 ◽  
Author(s):  
Tatiana Góes Junghans ◽  
Maria Goreti de Almeida Oliveira ◽  
Maurilio Alves Moreira

The objective of this work was to evaluate root and nodule soybean lipoxygenases in Doko cultivar and in a near isogenic line lacking seed lipoxygenases, inoculated and uninoculated with Bradyrhizobium elkanii. The lipoxygenase activities from roots collected at 3, 5, 9, 13, 18 and 28 days post-inoculation and from nodules collected at 13, 18 and 28 days post-inoculation were measured. The pH-activity profiles from root and nodules suggested that the lipoxygenases pool expressed in these organs from Doko cultivar and triple-null near isogenic lines are similar. The root lipoxygenase activity of Doko and triple-null lines, inoculated and uninoculated, reduced over time. The highest lipoxygenase activity observed at the beginning of root formation suggests the involvement of this enzyme in growth and development of this organ. However, for nodules an expressive increase of lipoxygenase activity was noticed 28 days post-inoculation. Root and nodule showed, at least, two mobility groups for lipoxygenases in immunoblottings, with approximately 94 and 97 kDa.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207036 ◽  
Author(s):  
Lipu Wang ◽  
Qiang Li ◽  
Ziying Liu ◽  
Anu Surendra ◽  
Youlian Pan ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1128
Author(s):  
Emese Varga-László ◽  
Katalin Puskás ◽  
Balázs Varga ◽  
Zsuzsanna Farkas ◽  
Ottó Veisz ◽  
...  

One of the most important limiting factors of high-quality wheat production is Fusarium head blight infection. The various Fusarium species not only may cause severe yield loss but—due to toxin production—the grains also might become unsuitable for animal and human nutrition. In the present research, our aim was to examine the Fusarium resistance of a special mapping population (’BKT9086-95/Mv Magvas’) and identify the genetic factors and chromosome regions determining the tolerance to Fusarium culmorum and Fusarium graminearum. The connection between the genetic background and the Fusarium head blight sensitivity was confirmed by the analysis of variance in the case of three markers, among which the co-dominant pattern of the gtac2 and gtac3 amplified fragment length polymorphism (AFLP) markers might indicate a marker development possibility. Consistently expressed quantitative trait loci (QTLs) were identified on the chromosomes 2A, 2B, 2D, 5A, and 7A. Loci linked to resistance were identified on 11 chromosomes. During the investigation of phenological and morphological traits (heading date, plant height, ear compactness) influencing the head blight resistance and the location of the resistance QTLs, the total overlap was found in the case of the region identified on chromosome 2D and partial overlap on chromosomes 2A and 2B. Whereas 5A may be a rare allelic variant of a novel QTL.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Nima Khaledi ◽  
Parissa Taheri ◽  
Mahrokh Falahati-Rastegar

Abstract Fusarium graminearum and F. culmorum are the causal agents of Fusarium head blight (FHB) in cereal crops worldwide. Application of resistant cultivars is the most effective and economic method for management of FHB and reducing mycotoxin production in wheat. Understanding the physiological and biochemical mechanisms involved in basal resistance of wheat to FHB disease is limited. In this research, after screening resistance levels of eighteen wheat cultivars planted in Iran, Gaskozhen and Falat were identified as partially resistant and susceptible wheat cultivars against Fusarium spp., respectively. Also, we investigated the role of hydroxyl radical (OH−), nitric oxide (NO), callose deposition, lipid peroxidation and protein content in basal resistance of wheat to the hemi-biotrophic and necrotrophic Fusarium species causing FHB. Nitric oxide as a signaling molecule may be involved in physiological and defensive processes in plants. Our results showed that NO generation increased in seedlings and spikes of wheat cultivars after inoculation with Fusarium species. We observed earlier and stronger callose deposition at early time points after infection by Fusarium spp. isolates than in non-infected plants, which was positively related to the resistance levels in wheat cultivars. Higher levels of OH− and malondialdehyde (MDA) accumulation (as a marker of lipid peroxidation) were observed in the Falat than in the Gaskozhen cultivar, under non-infected and infected conditions. So, estimation of lipid peroxidation could be useful to evaluate cultivars’ susceptibility. These findings can provide novel insights for better recognition of physiological and biochemical markers of FHB resistance, which could be used for rapid screening of resistance levels in wheat cultivars against this destructive fungal disease.


2016 ◽  
Vol 6 (2) ◽  
pp. 953-962
Author(s):  
Victor Okereke ◽  
Hannah Jones ◽  
Mike Gooding

Two pot experiments were conducted using elite lines and near isogenic lines (NILs) of winter wheat in a controlled environment to evaluate the effect of time of inoculation and subsequent increase in temperature during grain-filling on Fusarium head blight (FHB) and deoxynivalenol (DON) on the infected wheat grains. The experiments were a complete factorial combination with randomised replicates. Fusarium graminearum was used to spray inoculate wheat spikes at glume loose (GL). GL was established when the lower glume could be opened with a thumbnail. Fusarium inoculation was done at glume loose (GL+0), 4 and 8 days after (GL+4 and GL+8), respectively. Pots transferred to controlled environment cabinets set at 23/15oC or 28/20oC. Results reveal that FHB severity showed a significant (P<0.05) cultivar and temperature interaction in both elite and near isogenic lines. High temperature increased FHB severity by 35% in the NILs. DON concentration showed cultivar sensitive in both sets of cultivars. Inoculation at GL+4 which corresponded with the mid-anthesis gave the highest FHB severity and DON concentration in NILs, while the elite cultivars showed cultivar sensitive to DON accumulation regardless of the time of Fusarium inoculation.


Plant Disease ◽  
2006 ◽  
Vol 90 (5) ◽  
pp. 637-644 ◽  
Author(s):  
N. S. Dufault ◽  
E. D. De Wolf ◽  
P. E. Lipps ◽  
L. V. Madden

Fusarium graminearum (teleomorph Gibberella zeae) is the most common pathogen of Fusarium head blight (FHB) in North America. Ascospores released from the perithecia of G. zeae are a major source of inoculum for FHB. The influence of temperature and moisture on perithecial production and development was evaluated by monitoring autoclaved inoculated cornstalk sections in controlled environments. Perithecial development was assessed at all combinations of five temperatures (12, 16, 20, 24, and 28°C) and four moisture levels with means (range) -0.45 (-0.18, -1.16), -1.30 (-0.81, -1.68), -2.36 (-1.34, -3.53) and -4.02 (-2.39, -5.88) MPa. Moisture levels of -0.45 and -1.30 MPa and temperatures from 16 to 24°C promoted perithecial production and development. Temperatures of 12 and 28°C and moisture levels of -2.36 and -4.02 MPa either slowed or limited perithecial production and development. The water potential of -1.30 MPa had mature perithecia after 10 days at 20°C, but not until after 15 days for 24°C. In contrast, few perithecia achieved maturity and produced ascospores at lower moisture levels (-2.36 and -4.02 MPa) and low (12°C) and high (28°C) temperatures. In the future, it may be possible to use the information gathered in these experiments to improve the accuracy of FHB forecasting systems.


2012 ◽  
Vol 34 (2) ◽  
pp. 224-238 ◽  
Author(s):  
Á. Szabó-Hevér ◽  
S. Lehoczki-Krsjak ◽  
B. Tóth ◽  
L. Purnhauser ◽  
H. Buerstmayr ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document