scholarly journals Early gestational exposure to ozone increases caloric consumption in male and female peri‐adolescent offspring when challenged with a high fat diet

2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Colette N. Miller ◽  
Erica Stewart ◽  
Katherine L. McDaniel ◽  
Pamela M. Phillips ◽  
Mette C. Schladweiler ◽  
...  
Metabolism ◽  
2021 ◽  
Vol 116 ◽  
pp. 154635
Author(s):  
Gustavo Venâncio da Silva ◽  
Marina Galleazzo Martins ◽  
Giovana Pereira de Oliveira ◽  
Alessandra Gonçalves Cruz ◽  
Larissa Pereira Rodrigues ◽  
...  

Obesity ◽  
2018 ◽  
Vol 26 (9) ◽  
pp. 1430-1438 ◽  
Author(s):  
Cadence True ◽  
Tyler Dean ◽  
Diana Takahashi ◽  
Elinor Sullivan ◽  
Paul Kievit

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A806-A806
Author(s):  
Rachel Bell ◽  
Elisa Villalobos ◽  
Mark Nixon ◽  
Allende Miguelez-Crespo ◽  
Matthew Sharp ◽  
...  

Abstract Glucocorticoids play a critical role in metabolic homeostasis. Chronic or excessive activation of the glucocorticoid receptor (GR) in adipose tissue contributes to metabolic disorders such as glucose intolerance and insulin resistance. Steroid-metabolising enzymes in adipose, such as 11β-HSD1 or 5α-reductase, modulate the activation of GR by converting primary glucocorticoids into more or less potent ligands. Carbonyl reductase 1 (CBR1) is a novel regulator of glucocorticoid metabolism, converting corticosterone/cortisol to 20β-dihydrocorticosterone/cortisol (20β-DHB/F); a metabolite which retains GR activity. CBR1 is abundant in adipose tissue and increased in obese adipose of mice and humans1 and increased Cbr1 expression is associated with increased fasting glucose1. We hypothesised that increased Cbr1/20β-DHB in obese adipose contributes to excessive GR activation and worsens glucose tolerance. We generated a novel murine model of adipose-specific Cbr1 over-expression (R26-Cbr1Adpq) by crossing conditional knock-in mice with Adiponectin-Cre mice. CBR1 protein and activity were doubled in subcutaneous adipose tissue of male and female R26-Cbr1Adpq mice compared with floxed controls; corresponding to a two-fold increase 20β-DHB (1.6 vs. 4.2ng/g adipose; P=0.0003; n=5-7/group). There were no differences in plasma 20β-DHB or corticosterone. Bodyweight, lean or fat mass, did not differ between male or female R26-Cbr1Adpq mice and floxed controls. Lean male R26-Cbr1Adpq mice had higher fasting glucose (9.5±0.3 vs. 8.4±0.3mmol/L; P=0.04) and worsened glucose tolerance (AUC 1819±66 vs. 1392±14; P=0.03). Female R26-Cbr1Adpq mice also had a worsened glucose tolerance but fasting glucose was not altered with genotype. There were no differences in fasting insulin or non-esterified fatty acid between genotypes in either sex. Expression of GR-induced genes Pnpla2, Gilz and Per1, were increased in adipose of R26-Cbr1Adpq mice. Following high-fat diet induced obesity, no differences in bodyweight, lean or fat mass, with genotype were observed in male and female mice, and genotype differences in fasting glucose and glucose tolerance were abolished. In conclusion, adipose-specific over-expression of Cbr1 in lean male and female mice led to increased levels of 20β-DHB in adipose but not plasma, and both sexes having worsened glucose tolerance. The influence of adipose CBR1/20β-DHB on glucose tolerance was not associated with altered fat mass or bodyweight and was attenuated by high-fat diet-induced obesity. These metabolic consequences of Cbr1 manipulation require careful consideration given the wide variation in CBR1 expression in the human population, the presence of inhibitors and enhancers in many foodstuffs and the proposed use of inhibitors as an adjunct for cancer treatment regimens. Reference: Morgan et al., Scientific Reports. 2017; 7.


2019 ◽  
Vol 149 (1) ◽  
pp. 73-97 ◽  
Author(s):  
Eugene Nyamugenda ◽  
Marcus Trentzsch ◽  
Susan Russell ◽  
Tiffany Miles ◽  
Gunnar Boysen ◽  
...  

2018 ◽  
Vol 315 (6) ◽  
pp. H1713-H1723 ◽  
Author(s):  
Lia E. Taylor ◽  
Ellen E. Gillis ◽  
Jacqueline B. Musall ◽  
Babak Baban ◽  
Jennifer C. Sullivan

Evidence supports a sex difference in the impact of a high-fat diet (HFD) on cardiovascular outcomes, with male experimental animals exhibiting greater increases in blood pressure (BP) than female experimental animals. The immune system has been implicated in HFD-induced increases in BP, and there is a sex difference in T-cell activation in hypertension. The goal of this study was to determine the impact of HFD on BP and aortic and renal T cell profiles in male and female Dahl salt-sensitive (DSS) rats. We hypothesized that male DSS rats would have greater increases in BP and T cell infiltration in response to a HFD compared with female DSS rats. BP was measured by tail-cuff plethysmography, and aortic and renal T cells were assessed by flow cytometric analysis in male and female DSS rats on a normal-fat diet (NFD) or HFD from 12 to 16 wk of age. Four weeks of HFD increased BP in male and female DSS rats to a similar degree. Increases in BP were accompanied by increased percentages of CD4+ T cells and T helper (Th)17 cells in both sexes, although male rats had more proinflammatory T cells. Percentages of renal CD3+ and CD4+ T cells as well as Th17 cells were increased in both sexes by the HFD, although the increase in CD3+ T cells was greater in male rats. HFD also decreased the percentage of aortic and renal regulatory T cells in both sexes, although female rats maintained more regulatory T cells than male rats regardless of diet. In conclusion, both male and female DSS rats exhibit BP sensitivity to a HFD; however, the mechanisms mediating HFD-induced increases in BP may be distinct as male rats exhibit greater increases in the percentage of proinflammatory T cells than female rats. NEW & NOTEWORTHY Our study demonstrates that male and female Dahl salt-sensitive rats exhibit similar increases in blood pressure to a high-fat diet and an increase in aortic and renal T cells. These results are in contrast to studies showing that female rats remain normotensive and/or upregulate regulatory T cells in response to hypertensive stimuli compared with male rats. Our data suggest that a 4-wk high-fat diet has sex-specific effects on the T cell profile in Dahl salt-sensitive rats.


2006 ◽  
Vol 14 (7S_Part_27) ◽  
pp. P1458-P1458
Author(s):  
Abigail E. Salinero ◽  
Lisa S. Robison ◽  
Brian M. Anderson ◽  
David Riccio ◽  
Kristen L. Zuloaga

2010 ◽  
Vol 26 (3) ◽  
pp. 291-302 ◽  
Author(s):  
Antònia Nadal-Casellas ◽  
Emilia Amengual-Cladera ◽  
Ana María Proenza ◽  
Isabel Lladó ◽  
Magdalena Gianotti

Endocrinology ◽  
2016 ◽  
Vol 157 (6) ◽  
pp. 2333-2345 ◽  
Author(s):  
Minglan Yang ◽  
Maopei Chen ◽  
Jiqiu Wang ◽  
Min Xu ◽  
Jichao Sun ◽  
...  

A growing body of epidemiological research show that Bisphenol A (BPA) is positively correlated with obesity and metabolic disorders. However, the mechanisms of BPA on adiposity remain largely unknown. In this study, we found that 5-week-old male and female C57BL/6J mice exposed to four dosages of BPA (5, 50, 500, and 5000 μg/kg/d) by oral intake for 30 days showed significantly increased body weight and fat mass in a nonmonotonic dose-dependent manner when fed a chow diet. The effect occurred even at the lowest concentration (5μg/kg/d), lower than the tolerable daily intake of 50 μg/kg/day for BPA. However, no significant difference in body weight and fat mass was observed in either male or female mice fed a high-fat diet, suggesting that BPA may interact with diet in promoting obesity risk. In vitro study showed that BPA treatment drives the differentiation of white adipocyte progenitors from the stromal vascular fraction, partially through glucocorticoid receptor. BPA exposure increased circulating inflammatory factors and the local inflammation in white adipose tissues in both genders fed a chow diet, but not under high-fat diet. We further found that BPA concentration was associated with increased circulating inflammatory factors, including leptin and TNFα, in lean female subjects (body mass index < 23.0 kg/m2) but not in lean male subjects or in both sexes of overweight/obese subjects (body mass index > 25.0 kg/m2). In conclusion, we demonstrated the nonmonotonic dose effects of BPA on adiposity and chronic inflammation in 5-week-old mice, which is related to caloric uptake.


2015 ◽  
Vol 594 (5) ◽  
pp. 1465-1482 ◽  
Author(s):  
Amin Shah ◽  
Laura M. Reyes ◽  
Jude S. Morton ◽  
David Fung ◽  
Jillian Schneider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document