scholarly journals Functional Relevance of Unstructured Regions of AcrA, the Periplasmic Adaptor of the Major Multidrug Efflux System in E. coli

2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Isoiza Ojo ◽  
Yinan Wei

2002 ◽  
Vol 46 (12) ◽  
pp. 3984-3986 ◽  
Author(s):  
Annarita Mazzariol ◽  
Jessica Zuliani ◽  
Giuseppe Cornaglia ◽  
Gian Maria Rossolini ◽  
Roberta Fontana

ABSTRACT Seven Klebsiella pneumoniae and four Klebsiella oxytoca clinical isolates with different levels of resistance to ciprofloxacin were studied. Mutations in the topoisomerase genes were found in almost all strains, but the contribution of a multidrug efflux system homologous to AcrAB in Escherichia coli was also observed. Overexpression of this efflux system was demonstrated by immunoblotting with antibodies against E. coli AcrA.





1998 ◽  
Vol 42 (7) ◽  
pp. 1778-1782 ◽  
Author(s):  
Yuji Morita ◽  
Kazuyo Kodama ◽  
Sumiko Shiota ◽  
Tomoyuki Mine ◽  
Atsuko Kataoka ◽  
...  

ABSTRACT We found that cells of Vibrio parahaemolyticus possess an energy-dependent efflux system for norfloxacin. We cloned a gene for a putative norfloxacin efflux protein from the chromosomal DNA ofV. parahaemolyticus by using an Escherichia coli mutant lacking the major multidrug efflux system AcrAB as the host and sequenced the gene (norM). Cells of E. coli transformed with a plasmid carrying the norMgene showed elevated energy-dependent efflux of norfloxacin. The transformants showed elevated resistance not only to norfloxacin and ciprofloxacin but also to the structurally unrelated compounds ethidium, kanamycin, and streptomycin. These results suggest that this is a multidrug efflux system. The hydropathy pattern of the deduced amino acid sequence of NorM suggested the presence of 12 transmembrane domains. The deduced primary structure of NorM showed 57% identity and 88% similarity with that of a hypothetical E. coli membrane protein, YdhE. No reported drug efflux protein in the sequence databases showed significant sequence similarity with NorM. Thus, NorM seems to be a novel type of multidrug efflux protein. We cloned the ydhE gene from E. coli. Cells ofE. coli transformed with the cloned ydhE gene showed elevated resistance to norfloxacin, ciprofloxacin, acriflavine, and tetraphenylphosphonium ion, but not to ethidium, when MICs were measured. Thus, it seems that NorM and YdhE differ somehow in substrate specificity.



2007 ◽  
Vol 13 (2) ◽  
pp. 96-101 ◽  
Author(s):  
Lilian Pumbwe ◽  
Abraham Chang ◽  
Rachel L. Smith ◽  
Hannah M. Wexler


2018 ◽  
Vol 73 (5) ◽  
pp. 1247-1255 ◽  
Author(s):  
Keith Poole ◽  
Christie Gilmour ◽  
Maya A Farha ◽  
Michael D Parkins ◽  
Rachael Klinoski ◽  
...  


1996 ◽  
Vol 40 (10) ◽  
pp. 2288-2290 ◽  
Author(s):  
T Köhler ◽  
M Kok ◽  
M Michea-Hamzehpour ◽  
P Plesiat ◽  
N Gotoh ◽  
...  

Pseudomonas aeruginosa possesses at least two multiple drug efflux systems which are defined by the outer membrane proteins OprM and OprJ. We have found that mutants overexpressing OprM were two- and eightfold more resistant than their wild-type parent to sulfamethoxazole (SMX) and trimethoprim (TMP), respectively. For OprJ-overproducing strains, MICs of TMP increased fourfold but those of SMX were unchanged. Strains overexpressing OprM, but not those overexpressing OprJ, became hypersusceptible to TMP and SMX when oprM was inactivated. The wild-type antibiotic profile could be restored in an oprM mutant by transcomplementation with the cloned oprM gene. These results demonstrate that the mexABoprM multidrug efflux system is mainly responsible for the intrinsic resistance of P. aeruginosa to TMP and SMX.



1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.



Structure ◽  
2006 ◽  
Vol 14 (3) ◽  
pp. 577-587 ◽  
Author(s):  
Jonathan Mikolosko ◽  
Kostyantyn Bobyk ◽  
Helen I. Zgurskaya ◽  
Partho Ghosh


Sign in / Sign up

Export Citation Format

Share Document