NorM, a Putative Multidrug Efflux Protein, of Vibrio parahaemolyticus and Its Homolog in Escherichia coli

1998 ◽  
Vol 42 (7) ◽  
pp. 1778-1782 ◽  
Author(s):  
Yuji Morita ◽  
Kazuyo Kodama ◽  
Sumiko Shiota ◽  
Tomoyuki Mine ◽  
Atsuko Kataoka ◽  
...  

ABSTRACT We found that cells of Vibrio parahaemolyticus possess an energy-dependent efflux system for norfloxacin. We cloned a gene for a putative norfloxacin efflux protein from the chromosomal DNA ofV. parahaemolyticus by using an Escherichia coli mutant lacking the major multidrug efflux system AcrAB as the host and sequenced the gene (norM). Cells of E. coli transformed with a plasmid carrying the norMgene showed elevated energy-dependent efflux of norfloxacin. The transformants showed elevated resistance not only to norfloxacin and ciprofloxacin but also to the structurally unrelated compounds ethidium, kanamycin, and streptomycin. These results suggest that this is a multidrug efflux system. The hydropathy pattern of the deduced amino acid sequence of NorM suggested the presence of 12 transmembrane domains. The deduced primary structure of NorM showed 57% identity and 88% similarity with that of a hypothetical E. coli membrane protein, YdhE. No reported drug efflux protein in the sequence databases showed significant sequence similarity with NorM. Thus, NorM seems to be a novel type of multidrug efflux protein. We cloned the ydhE gene from E. coli. Cells ofE. coli transformed with the cloned ydhE gene showed elevated resistance to norfloxacin, ciprofloxacin, acriflavine, and tetraphenylphosphonium ion, but not to ethidium, when MICs were measured. Thus, it seems that NorM and YdhE differ somehow in substrate specificity.


2000 ◽  
Vol 182 (23) ◽  
pp. 6694-6697 ◽  
Author(s):  
Yuji Morita ◽  
Atsuko Kataoka ◽  
Sumiko Shiota ◽  
Tohru Mizushima ◽  
Tomofusa Tsuchiya

ABSTRACT NorM of Vibrio parahaemolyticusapparently is a new type of multidrug efflux protein, with no significant sequence similarity to any known transport proteins. Based on the following experimental results, we conclude that NorM is an Na+-driven Na+/drug antiporter. (i) Energy-dependent ethidium efflux from cells possessing NorM was observed in the presence of Na+ but not of K+. (ii) An artificially imposed, inwardly directed Na+gradient elicited ethidium efflux from cells. (iii) The addition of ethidium to cells loaded with Na+ elicited Na+efflux. Thus, NorM is an Na+/drug antiporting multidrug efflux pump, the first to be found in the biological world. Judging from the similarity of the NorM sequence to those of putative proteins in sequence databases, it seems that Na+/drug antiporters are present not only in V. parahaemolyticus but also in a wide range of other organisms.



2002 ◽  
Vol 46 (12) ◽  
pp. 3984-3986 ◽  
Author(s):  
Annarita Mazzariol ◽  
Jessica Zuliani ◽  
Giuseppe Cornaglia ◽  
Gian Maria Rossolini ◽  
Roberta Fontana

ABSTRACT Seven Klebsiella pneumoniae and four Klebsiella oxytoca clinical isolates with different levels of resistance to ciprofloxacin were studied. Mutations in the topoisomerase genes were found in almost all strains, but the contribution of a multidrug efflux system homologous to AcrAB in Escherichia coli was also observed. Overexpression of this efflux system was demonstrated by immunoblotting with antibodies against E. coli AcrA.



1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.



2000 ◽  
Vol 44 (12) ◽  
pp. 3441-3443 ◽  
Author(s):  
Annarita Mazzariol ◽  
Yutaka Tokue ◽  
Tiffany M. Kanegawa ◽  
Giuseppe Cornaglia ◽  
Hiroshi Nikaido

ABSTRACT Immunoblotting with antibody against AcrA, an obligatory component of the AcrAB multidrug efflux system, showed that this protein was overexpressed by ≥170% in 9 of 10 clinical isolates ofEsherichia coli with high-level ciprofloxacin resistance (MICs, ≥32 μg/ml) but not in any of the 15 isolates for which the MIC was ≤1 μg/ml.



2020 ◽  
Vol 48 (12) ◽  
pp. 6403-6412 ◽  
Author(s):  
Ye Wang ◽  
Haochen Wang ◽  
Lei Wei ◽  
Shuailin Li ◽  
Liyang Liu ◽  
...  

Abstract Promoter design remains one of the most important considerations in metabolic engineering and synthetic biology applications. Theoretically, there are 450 possible sequences for a 50-nt promoter, of which naturally occurring promoters make up only a small subset. To explore the vast number of potential sequences, we report a novel AI-based framework for de novo promoter design in Escherichia coli. The model, which was guided by sequence features learned from natural promoters, could capture interactions between nucleotides at different positions and design novel synthetic promoters in silico. We combined a deep generative model that guides the search for artificial sequences with a predictive model to preselect the most promising promoters. The AI-designed promoters were optimized based on the promoter activity in E. coli and the predictive model. After two rounds of optimization, up to 70.8% of the AI-designed promoters were experimentally demonstrated to be functional, and few of them shared significant sequence similarity with the E. coli genome. Our work provided an end-to-end approach to the de novo design of novel promoter elements, indicating the potential to apply deep learning methods to de novo genetic element design.



2005 ◽  
Vol 33 (4) ◽  
pp. 780-784 ◽  
Author(s):  
M. Fischer ◽  
W. Römisch ◽  
B. Illarionov ◽  
W. Eisenreich ◽  
A. Bacher

The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. GTP is hydrolytically opened, converted into 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate leads to 6,7-dimethyl-8-ribityllumazine. The dismutation of 6,7-dimethyl-8-ribityllumazine catalysed by riboflavin synthase produces riboflavin and 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. A pentacyclic adduct of two 6,7-dimethyl-8-ribityllumazines has been identified earlier as a catalytically competent reaction intermediate of the Escherichia coli enzyme. Acid quenching of reaction mixtures of riboflavin synthase of Methanococcus jannaschii, devoid of similarity to riboflavin synthases of eubacteria and eukaryotes, afforded a compound whose optical absorption and NMR spectra resemble that of the pentacyclic E. coli riboflavin synthase intermediate, whereas the CD spectra of the two compounds have similar envelopes but opposite signs. Each of the compounds could serve as a catalytically competent intermediate for the enzyme by which it was produced, but not vice versa. All available data indicate that the respective pentacyclic intermediates of the M. jannaschii and E. coli enzymes are diastereomers. Whereas the riboflavin synthase of M. jannaschii is devoid of similarity with those of eubacteria and eukaryotes, it has significant sequence similarity with 6,7-dimethyl-8-ribityllumazine synthases catalysing the penultimate step of riboflavin biosynthesis. 6,7-Dimethyl-8-ribityllumazine synthase and the archaeal riboflavin synthase appear to have diverged early in the evolution of Archaea from a common ancestor.



2004 ◽  
Vol 186 (24) ◽  
pp. 8533-8536 ◽  
Author(s):  
Fasahath Husain ◽  
Matthew Humbard ◽  
Rajeev Misra

ABSTRACT This paper provides the biochemical evidence for physical interactions between the outer membrane component, TolC, and the membrane fusion protein component, AcrA, of the major antibiotic efflux pump of Escherichia coli. Cross-linking between TolC and AcrA was independent of the presence of any externally added substrate of the efflux pump or of the pump protein, AcrB. The biochemical demonstration of a TolC-AcrA interaction is consistent with genetic studies in which extragenic suppressors of a mutant TolC strain were found in the acrA gene.



2004 ◽  
Vol 53 (2) ◽  
pp. 697-706 ◽  
Author(s):  
Thierry Touzé ◽  
Jeyanthy Eswaran ◽  
Evert Bokma ◽  
Eva Koronakis ◽  
Colin Hughes ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document