scholarly journals AcrAB Efflux System: Expression and Contribution to Fluoroquinolone Resistance in Klebsiella spp

2002 ◽  
Vol 46 (12) ◽  
pp. 3984-3986 ◽  
Author(s):  
Annarita Mazzariol ◽  
Jessica Zuliani ◽  
Giuseppe Cornaglia ◽  
Gian Maria Rossolini ◽  
Roberta Fontana

ABSTRACT Seven Klebsiella pneumoniae and four Klebsiella oxytoca clinical isolates with different levels of resistance to ciprofloxacin were studied. Mutations in the topoisomerase genes were found in almost all strains, but the contribution of a multidrug efflux system homologous to AcrAB in Escherichia coli was also observed. Overexpression of this efflux system was demonstrated by immunoblotting with antibodies against E. coli AcrA.

1998 ◽  
Vol 42 (7) ◽  
pp. 1778-1782 ◽  
Author(s):  
Yuji Morita ◽  
Kazuyo Kodama ◽  
Sumiko Shiota ◽  
Tomoyuki Mine ◽  
Atsuko Kataoka ◽  
...  

ABSTRACT We found that cells of Vibrio parahaemolyticus possess an energy-dependent efflux system for norfloxacin. We cloned a gene for a putative norfloxacin efflux protein from the chromosomal DNA ofV. parahaemolyticus by using an Escherichia coli mutant lacking the major multidrug efflux system AcrAB as the host and sequenced the gene (norM). Cells of E. coli transformed with a plasmid carrying the norMgene showed elevated energy-dependent efflux of norfloxacin. The transformants showed elevated resistance not only to norfloxacin and ciprofloxacin but also to the structurally unrelated compounds ethidium, kanamycin, and streptomycin. These results suggest that this is a multidrug efflux system. The hydropathy pattern of the deduced amino acid sequence of NorM suggested the presence of 12 transmembrane domains. The deduced primary structure of NorM showed 57% identity and 88% similarity with that of a hypothetical E. coli membrane protein, YdhE. No reported drug efflux protein in the sequence databases showed significant sequence similarity with NorM. Thus, NorM seems to be a novel type of multidrug efflux protein. We cloned the ydhE gene from E. coli. Cells ofE. coli transformed with the cloned ydhE gene showed elevated resistance to norfloxacin, ciprofloxacin, acriflavine, and tetraphenylphosphonium ion, but not to ethidium, when MICs were measured. Thus, it seems that NorM and YdhE differ somehow in substrate specificity.


1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.


2001 ◽  
Vol 45 (5) ◽  
pp. 1515-1521 ◽  
Author(s):  
Hui Wang ◽  
Joann L. Dzink-Fox ◽  
Minjun Chen ◽  
Stuart B. Levy

ABSTRACT The genetic basis for fluoroquinolone resistance was examined in 30 high-level fluoroquinolone-resistant Escherichia coliclinical isolates from Beijing, China. Each strain also demonstrated resistance to a variety of other antibiotics. PCR sequence analysis of the quinolone resistance-determining region of the topoisomerase genes (gyrA/B, parC) revealed three to five mutations known to be associated with fluoroquinolone resistance. Western blot analysis failed to demonstrate overexpression of MarA, and Northern blot analysis did not detect overexpression of soxS RNA in any of the clinical strains. The AcrA protein of the AcrAB multidrug efflux pump was overexpressed in 19 of 30 strains of E. colitested, and all 19 strains were tolerant to organic solvents. PCR amplification of the complete acrR (regulator/repressor) gene of eight isolates revealed amino acid changes in four isolates, a 9-bp deletion in another, and a 22-bp duplication in a sixth strain. Complementation with a plasmid-borne wild-type acrR gene reduced the level of AcrA in the mutants and partially restored antibiotic susceptibility 1.5- to 6-fold. This study shows that mutations in acrR are an additional genetic basis for fluoroquinolone resistance.


2000 ◽  
Vol 44 (12) ◽  
pp. 3441-3443 ◽  
Author(s):  
Annarita Mazzariol ◽  
Yutaka Tokue ◽  
Tiffany M. Kanegawa ◽  
Giuseppe Cornaglia ◽  
Hiroshi Nikaido

ABSTRACT Immunoblotting with antibody against AcrA, an obligatory component of the AcrAB multidrug efflux system, showed that this protein was overexpressed by ≥170% in 9 of 10 clinical isolates ofEsherichia coli with high-level ciprofloxacin resistance (MICs, ≥32 μg/ml) but not in any of the 15 isolates for which the MIC was ≤1 μg/ml.


2001 ◽  
Vol 45 (5) ◽  
pp. 1467-1472 ◽  
Author(s):  
A. S. Jellen-Ritter ◽  
W. V. Kern

ABSTRACT The development of fluoroquinolone resistance in Escherichia coli may be associated with mutations in regulatory gene loci such as marRAB that lead to increased multidrug efflux, presumably through activation of expression of the AcrAB multidrug efflux pump. We found that multidrug-resistant (MDR) phenotypes with enhanced efflux can also be selected by fluoroquinolones frommarRAB- or acrAB-inactivated E. coli K-12 strains having a single mutation in the quinolone-resistance-determining region of gyrA. Mutant 3-AG100MKX, obtained from a mar knockout strain after two selection steps, showed enhanced expression of acrB in a reverse transcriptase PCR associated with insertion of IS186 into the AcrAB repressor gene acrR. In vitro selection experiments with acrAB knockout strains yielded MDR mutants after a single step. Enhanced efflux in these mutants was due to increased expression of acrEF and associated with insertion of IS2 into the upstream region ofacrEF, presumably creating a hybrid promoter. These observations confirm the importance of efflux-associated nontarget gene mutations and indicate that transposition of genetic elements may have a role in the development of fluoroquinolone resistance in E. coli.


2004 ◽  
Vol 186 (24) ◽  
pp. 8533-8536 ◽  
Author(s):  
Fasahath Husain ◽  
Matthew Humbard ◽  
Rajeev Misra

ABSTRACT This paper provides the biochemical evidence for physical interactions between the outer membrane component, TolC, and the membrane fusion protein component, AcrA, of the major antibiotic efflux pump of Escherichia coli. Cross-linking between TolC and AcrA was independent of the presence of any externally added substrate of the efflux pump or of the pump protein, AcrB. The biochemical demonstration of a TolC-AcrA interaction is consistent with genetic studies in which extragenic suppressors of a mutant TolC strain were found in the acrA gene.


2004 ◽  
Vol 53 (2) ◽  
pp. 697-706 ◽  
Author(s):  
Thierry Touzé ◽  
Jeyanthy Eswaran ◽  
Evert Bokma ◽  
Eva Koronakis ◽  
Colin Hughes ◽  
...  

2008 ◽  
Vol 190 (18) ◽  
pp. 6276-6279 ◽  
Author(s):  
Hidetada Hirakawa ◽  
Asuka Takumi-Kobayashi ◽  
Ulrike Theisen ◽  
Takahiro Hirata ◽  
Kunihiko Nishino ◽  
...  

ABSTRACT The acrS regulatory gene is located upstream of the acrEF multidrug efflux system genes. However, the roles of AcrS in regulation of drug efflux pumps have not been clearly understood. Here we show that AcrS represses other multidrug efflux genes, acrAB, which encode a major efflux system in Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document