scholarly journals Similarities Between Stem Cell Niches in Glioblastoma and Bone Marrow: Rays of Hope for Novel Treatment Strategies

2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Vashendriya Hira ◽  
Barbara Breznik ◽  
Annique Loncq de Jong ◽  
Mohammed Khurshed ◽  
Remco Molenaar ◽  
...  
2019 ◽  
Vol 68 (1) ◽  
pp. 33-57 ◽  
Author(s):  
Vashendriya V.V. Hira ◽  
Barbara Breznik ◽  
Miloš Vittori ◽  
Annique Loncq de Jong ◽  
Jernej Mlakar ◽  
...  

Glioblastoma is the most aggressive primary brain tumor. Slowly dividing and therapy-resistant glioblastoma stem cells (GSCs) reside in protective peri-arteriolar niches and are held responsible for glioblastoma recurrence. Recently, we showed similarities between GSC niches and hematopoietic stem cell (HSC) niches in bone marrow. Acute myeloid leukemia (AML) cells hijack HSC niches and are transformed into therapy-resistant leukemic stem cells (LSCs). Current clinical trials are focussed on removal of LSCs out of HSC niches to differentiate and to become sensitized to chemotherapy. In the present study, we elaborated further on these similarities by immunohistochemical analyses of 17 biomarkers in paraffin sections of human glioblastoma and human bone marrow. We found all 17 biomarkers to be expressed both in hypoxic peri-arteriolar HSC niches in bone marrow and hypoxic peri-arteriolar GSC niches in glioblastoma. Our findings implicate that GSC niches are being formed in glioblastoma as a copy of HSC niches in bone marrow. These similarities between HSC niches and GSC niches provide a theoretic basis for the development of novel strategies to force GSCs out of their niches, in a similar manner as in AML, to induce GSC differentiation and proliferation to render them more sensitive to anti-glioblastoma therapies.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 507-519 ◽  
Author(s):  
Anas Younes

AbstractAlthough classical Hodgkin lymphoma (HL) is considered one of the most curable human cancers, the treatment of patients with relapsed and refractory disease, especially those who relapse after autologous stem cell transplantation, remains challenging. Furthermore, because the median age of the patients is in the mid-30s, the impact of early mortality on the number of years lost from productive life is remarkable. Patients with HL whose disease relapses after stem cell transplantation are rarely cured with current treatment modalities. New drugs and novel treatment strategies that are based on our understanding of the disease biology and signaling pathways are needed to improve treatment outcome for these patients. This review will focus on emerging new treatment modalities that are currently under investigation for patients with relapsed classical HL.


1991 ◽  
Vol 4 (5) ◽  
pp. 282-294
Author(s):  
C. Randall Marchbanks ◽  
Karen A. Rowley

Recent advances in medical care have provided more effective therapies for the treatment of various malignancies and increased the number of successful bone marrow and organ transplantations. However, these advances often place the patient in a severely immunocompromised state for several days or weeks resulting in one or more life-threatening infections. This article discusses some general principles, current pharmacotherapeutic strategies, and novel treatment strategies for the management of immunocompromised patients.


2020 ◽  
pp. 972-987
Author(s):  
Ramez N. Eskander ◽  
Julia Elvin ◽  
Laurie Gay ◽  
Jeffrey S. Ross ◽  
Vincent A. Miller ◽  
...  

PURPOSE High-grade neuroendocrine cervical cancer (HGNECC) is an uncommon malignancy with limited therapeutic options; treatment is patterned after the histologically similar small-cell lung cancer (SCLC). To better understand HGNECC biology, we report its genomic landscape. PATIENTS AND METHODS Ninety-seven patients with HGNECC underwent comprehensive genomic profiling (182-315 genes). These results were subsequently compared with a cohort of 1,800 SCLCs. RESULTS The median age of patients with HGNECC was 40.5 years; 83 patients (85.6%) harbored high-risk human papillomavirus (HPV). Overall, 294 genomic alterations (GAs) were identified (median, 2 GAs/sample; average, 3.0 GAs/sample, range, 0-25 GAs/sample) in 109 distinct genes. The most frequently altered genes were PIK3CA (19.6% of cohort), MYC (15.5%), TP53 (15.5%), and PTEN (14.4%). RB1 GAs occurred in 4% versus 32% of HPV-positive versus HPV-negative tumors ( P < .0001). GAs in HGNECC involved the following pathways: PI3K/AKT/mTOR (41.2%); RAS/MEK (11.3%); homologous recombination (9.3%); and ERBB (7.2%). Two tumors (2.1%) had high tumor mutational burden (TMB; both with MSH2 alterations); 16 (16.5%) had intermediate TMB. Seventy-one patients (73%) had ≥ 1 alteration that was theoretically druggable. Comparing HGNECC with SCLC, significant differences in TMB, microsatellite instability, HPV-positive status, and in PIK3CA, MYC, PTEN, TP53, ARID1A, and RB1 alteration rates were found. CONCLUSION This large cohort of patients with HGNECC demonstrated a genomic landscape distinct from SCLC, calling into question the biologic and therapeutic relevance of the histologic similarities between the entities. Furthermore, 73% of HGNECC tumors had potentially actionable alterations, suggesting novel treatment strategies for this aggressive malignancy.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5435
Author(s):  
Maiko Matsushita

Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.


Sign in / Sign up

Export Citation Format

Share Document