scholarly journals Laser Capture Microscopy (LCM) and real time RT‐PCR: Gene expression in PVN of transgenic vasopressin‐enhanced green fluorescent protein (VP‐eGFP) rats

2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Cheryl M. Heesch ◽  
Javier E. Stern ◽  
Shannon M. Burcks ◽  
Yoichi Ueta ◽  
David Murphy
2002 ◽  
Vol 68 (12) ◽  
pp. 5956-5964 ◽  
Author(s):  
Matthew D. Lefebre ◽  
Miguel A. Valvano

ABSTRACT Genetic studies with Burkholderia cepacia complex isolates are hampered by the limited availability of cloning vectors and by the inherent resistance of these isolates to the most common antibiotics used for genetic selection. Also, some of the promoters widely employed for gene expression in Escherichia coli are inefficient in B. cepacia. In this study, we have utilized the backbone of the vector pME6000, a derivative of the pBBR1 plasmid that was originally isolated from Bordetella bronchiseptica, to construct a set of vectors useful for gene expression in B. cepacia. These vectors contain either the constitutive promoter of the S7 ribosomal protein gene from Burkholderia sp. strain LB400 or the arabinose-inducible P BAD promoter from E. coli. Promoter sequences were placed immediately upstream of multiple cloning sites in combination with the minimal sequence of pME6000 required for plasmid maintenance and mobilization. The functionality of both vectors was assessed by cloning the enhanced green fluorescent protein gene (e-gfp) and determining the levels of enhanced green fluorescent protein expression and fluorescence emission for a variety of clinical and environmental isolates of the B. cepacia complex. We also demonstrate that B. cepacia carrying these constructs can readily be detected intracellularly by fluorescence microscopy following the infection of Acanthamoeba polyphaga.


2002 ◽  
Vol 283 (6) ◽  
pp. F1351-F1364 ◽  
Author(s):  
Ludmilla Zharkikh ◽  
Xiaohong Zhu ◽  
Peter K. Stricklett ◽  
Donald E. Kohan ◽  
Greg Chipman ◽  
...  

The purpose of this study is to develop transgenic mice with principal cell-specific expression of green fluorescent protein (GFP). After the cloning and sequencing of the mouse aquaporin-2 (AQP2) gene, 9.5 kb of the promoter were used to drive expression of GFP in transgenic mice. In transgenic mice, GFP was selectively expressed in principal cells of the renal collecting duct and not in intercalated cells. Expression was increased by dehydration of mice. AQP2 and GFP expression was maintained in primary cultures of renal medulla that were stimulated with cAMP or vasopressin analogs. GFP-expressing cells were then isolated by fluorescence-activated cell sorting. RT-PCR analysis showed expression of AQP2, AQP3, AQP4, vasopressin type 2 receptor, and cAMP response element binding protein but not H+-ATPase B1 subunit or anion exchanger 1. After expansion of these cells in culture, RT-PCR analysis showed continued expression of the same genes. This pattern of gene expression is that of principal cells rather than intercalated cells. This transgenic mouse model can be used in future studies of gene expression during the development, differentiation, and maturation of renal principal cells.


Microbiology ◽  
1997 ◽  
Vol 143 (2) ◽  
pp. 303-311 ◽  
Author(s):  
B. P. Cormack ◽  
G. Bertram ◽  
M. Egerton ◽  
N. A. R. Gow ◽  
S. Falkow ◽  
...  

2004 ◽  
Vol 78 (22) ◽  
pp. 12333-12343 ◽  
Author(s):  
Stefan Finke ◽  
Krzysztof Brzózka ◽  
Karl-Klaus Conzelmann

ABSTRACT Rhabdoviruses such as rabies virus (RV) encode only five multifunctional proteins accomplishing viral gene expression and virus formation. The viral phosphoprotein, P, is a structural component of the viral ribonucleoprotein (RNP) complex and an essential cofactor for the viral RNA-dependent RNA polymerase. We show here that RV P fused to enhanced green fluorescent protein (eGFP) can substitute for P throughout the viral life cycle, allowing fluorescence labeling and tracking of RV RNPs under live cell conditions. To first assess the functions of P fusion constructs, a recombinant RV lacking the P gene, SAD ΔP, was complemented in cell lines constitutively expressing eGFP-P or P-eGFP fusion proteins. P-eGFP supported the rapid accumulation of viral mRNAs but led to low infectious-virus titers, suggesting impairment of virus formation. In contrast, complementation with eGFP-P resulted in slower accumulation of mRNAs but similar infectious titers, suggesting interference with polymerase activity rather than with virus formation. Fluorescence microscopy allowed the detection of eGFP-P-labeled extracellular virus particles and tracking of cell binding and temperature-dependent internalization into intracellular vesicles. Recombinant RVs expressing eGFP-P or an eGFP-P mutant lacking the binding site for dynein light chain 1 (DLC1) instead of P were used to track interaction with cellular proteins. In cells expressing a DsRed-labeled DLC1, colocalization of DLC1 with eGFP-P but not with the mutant P was observed. Fluorescent labeling of RV RNPs will allow further dissection of virus entry, replication, and egress under live-cell conditions as well as cell interactions.


2006 ◽  
Vol 14 (21) ◽  
pp. 9815 ◽  
Author(s):  
Alberto Diaspro ◽  
Silke Krol ◽  
Barbara Campanini ◽  
Fabio Cannone ◽  
Giuseppe Chirico

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Sign in / Sign up

Export Citation Format

Share Document