scholarly journals M cell development occurs preferentially in distal small intestinal Peyer's patches in mice lacking B cells (μMT), CCR6, or TRANCE/RANKL

2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Kathryn A Freel ◽  
Rebekah T Taylor ◽  
Betsy R Butler ◽  
Nachiket Kumar ◽  
Ifor R Williams
1995 ◽  
Vol 4 (4) ◽  
pp. 263-277 ◽  
Author(s):  
Philip J. Griebel ◽  
Birgit Kugelberg ◽  
Giorgio Ferrari

The developmental biology of sheep ileal and jejunal Peyer’s patches (PP) was investigated using corticosteroids to deplete immature B lymphocytes. During a 7-day treatment with dexamethasone, ileal PP follicular (iPf)B-cell proliferation was arrested and most iPfB-cells died. This resulted in follicular involution with the survival of mesenchymal cells. No iPfB-cell proliferation was detected in follicular remnants for 4 weeks postdexamethasone treatment, and during a subsequent 3-month period, there was limited iPfB-cell proliferation that resulted in a partial regeneration of follicles. Ileal PP involution was also associated with a severe B lymphopenia that persisted for over 14 weeks and was characterized by the survival of primarily isotype-switched and CD5+sIgM+B-cells in blood. In contrast, the size of jejunal PP follicles was reduced following dexamethasone treatment, but intrafollicular B-cell proliferation was not arrested. Furthermore, within 4 weeks, the jejunal PP follicles had recovered in size and cellularity and there was no disruption in IgA plasma-cell production. Thus, dexamethasone selectively depleted iPfB-cells and revealed that the ileal and jejunal PPs contain functionally distinct B-cell populations. The partial regeneration of the iPfB-cell population indicated that either an intrafollicular, corticosteroid-resistant B-stem cell existed or that ileal PP follicles can be repopulated by circulating B-cells. Finally, the association between ileal PP involution and the absence of circulating, CD5-B-cells confirmed that this lymphoid tissue provides an essential environment for conventional sIgM+B-cell development.


2021 ◽  
Author(s):  
Joel Johnson George ◽  
Fabio Tadeu Arrojo Martins ◽  
Laura Martin-Diaz ◽  
Keijo Viiri

Microfold cells (M cells) are a specialized subset of epithelial intestinal cells responsible for immunosurveillance of the gastrointestinal tract. M cells are located in the Peyer's patches and are crucial for monitoring and the transcytosis of antigens, microorganisms, and pathogens via their mature receptor GP2. A mature M cell with Gp2 receptor aids in the uptake of antigens, which are passed through the single layer of epithelium and presented to underlying antigen-presenting cells and processed further down-stream with B cells, T cells, and dendritic cells. Recent studies revealed several transcription factors and ligands responsible for the development and differentiation of mature M cells however, an exhaustive list of factors remains to be elucidated. Our recent work on the epigenetic regulation of M cell development found 12 critical transcription factors that were controlled by the polycomb recessive complex 2. Musculoaponeurotic fibrosarcoma transcription factor (Maf) was identified as a gene regulated by the polycomb repressive complex (PRC2) during the development of M cells. In this paper, we explore Maf's critical role in M cell differentiation and maturation. Maf falls under the purview of RANKL signaling, is localized in the Peyer's patches of the intestine, and is expressed by M cells. Given that, complete knockout of the Maf gene leads to a lethal phenotype, organoids isolated from Maf knockout mice and treated with RANKL exhibited impaired M cell development and a significant decrease in Gp2 expression. These findings reveal that Maf is an important regulator for M cell development and differentiation.


2003 ◽  
Vol 10 (1) ◽  
pp. 19-26 ◽  
Author(s):  
P. McCullagh ◽  
C. McL. Press ◽  
S. J. McClure ◽  
H. J. Larsen ◽  
T. Landsverk

The administration of a single bolus of anti-IgM antibody to foetal lambs early in pregnancy produces prolonged B-cell depletion. The present study investigated this depletion by examining the effect, on B-cell development in the ileal Peyer's patches, of varying the timing and dosage of antibody administration and by supplementing anti-IgM with surgical splenectomy. The capacity of a 1 mg bolus of anti-IgM to deplete Peyer's patches of B cells was lost if its administration was deferred until two thirds of the way through pregnancy, but persisted beyond this time if weight-adjusted doses were used. Splenectomy of the foetus performed at an earlier age failed to extend the age at which a 1 mg dose of antibody remained effective. As the concentration of murine immunoglobulin in foetal serum was greatly reduced after 21 days, it is inferred that ongoing suppression of B-cell development is not dependent on the continued presence of murine immunoglobulin. The enduring nature of suppression could be attributable to a limited period during which differentiation of B cells from stem cells normally occurs, although further studies will be needed to investigate this and other possible explanations for the effect of anti-IgM treatment on prenatal B-cell development in sheep.


2005 ◽  
Vol 166 (6) ◽  
pp. 1647-1654 ◽  
Author(s):  
Andreas Lügering ◽  
Martin Floer ◽  
Sabine Westphal ◽  
Christian Maaser ◽  
Thomas W. Spahn ◽  
...  

Author(s):  
Lorenzo Spagnuolo ◽  
Viola Puddinu ◽  
Noémie Boss ◽  
Thibaud Spinetti ◽  
Anne Oberson ◽  
...  

2004 ◽  
Vol 286 (5) ◽  
pp. G702-G710 ◽  
Author(s):  
Toshiko Ogawa ◽  
Soichiro Miura ◽  
Yoshikazu Tsuzuki ◽  
Takashi Ogino ◽  
Ken Teramoto ◽  
...  

Few models have described a chronic food allergy with morphological changes in the intestinal mucosa. Here we established an ovalbumin (OVA)-induced, cell-mediated, allergic rat model and examined lymphocyte migration in the gut. Brown Norway rats were intraperitoneally sensitized to OVA and then given 10 mg OVA/day by gastric intubation for 6 wk. Lymphocyte subsets and adhesion molecules were examined immunohistochemically, and the migration of T lymphocytes to microvessels of Peyer's patches and villus mucosa was observed by using an intravital microscope. Serum OVA-specific IgG and IgE levels were increased in animals repeatedly exposed to OVA. Significant villus atrophy and increased crypt depth was accompanied by increased infiltration of T lymphocytes in the small intestinal mucosa of the group given OVA. Expression of rat mast cell protease II and of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) was also increased in these groups. The administration of anti-MAdCAM-1 antibody significantly attenuated the OVA-induced changes in the mucosal architecture and in CD4 T lymphocyte infiltration. Intravital observation demonstrated that in rats with a chronic allergy, T lymphocytes significantly accumulated in villus microvessels as well as in Peyer's patches via a MAdCAM-1-dependent process. Our model of chronic food allergy revealed that lymphocyte migration was increased with MAdCAM-1 upregulation.


2000 ◽  
Vol 192 (2) ◽  
pp. 249-258 ◽  
Author(s):  
Denise M. Monack ◽  
David Hersh ◽  
Nafisa Ghori ◽  
Donna Bouley ◽  
Arturo Zychlinsky ◽  
...  

Salmonella typhimurium invades host macrophages and induces apoptosis and the release of mature proinflammatory cytokines. SipB, a protein translocated by Salmonella into the cytoplasm of macrophages, is required for activation of Caspase-1 (Casp-1, an interleukin [IL]-1β–converting enzyme), which is a member of a family of cysteine proteases that induce apoptosis in mammalian cells. Casp-1 is unique among caspases because it also directly cleaves the proinflammatory cytokines IL-1β and IL-18 to produce bioactive cytokines. We show here that mice lacking Casp-1 (casp-1−/− mice) had an oral S. typhimurium 50% lethal dose (LD50) that was 1,000-fold higher than that of wild-type mice. Salmonella breached the M cell barrier of casp-1−/− mice efficiently; however, there was a decrease in the number of apoptotic cells, intracellular bacteria, and the recruitment of polymorphonuclear lymphocytes in the Peyer's patches (PP) as compared with wild-type mice. Furthermore, Salmonella did not disseminate systemically in the majority of casp-1−/− mice, as demonstrated by significantly less colonization in the PP, mesenteric lymph nodes, and spleens of casp-1−/− mice after an oral dose of S. typhimurium that was 100-fold higher than the LD50. The increased resistance in casp-1−/− animals appears specific for Salmonella infection since these mice were susceptible to colonization by another enteric pathogen, Yersinia pseudotuberculosis, which normally invades the PP. These results show that Casp-1, which is both proapoptotic and proinflammatory, is essential for S. typhimurium to efficiently colonize the cecum and PP and subsequently cause systemic typhoid-like disease in mice.


2009 ◽  
Vol 63 (5) ◽  
pp. 343-355 ◽  
Author(s):  
Lydia Scharek-Tedin ◽  
Matthias Filter ◽  
David Taras ◽  
Paul Wrede ◽  
Michael F.G. Schmidt

Sign in / Sign up

Export Citation Format

Share Document