scholarly journals Protein arginine methyltransferase 5 (PRMT5) contributes positively to the induction of the E‐selectin gene in endothelial cells (EC) by binding to HOXA9

2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
Smarajit Bandyopadhyay ◽  
Daniel P. Harris ◽  
Gregory Lause ◽  
Angela Money ◽  
Paul E. DiCorleto
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sara Busacca ◽  
Qi Zhang ◽  
Annabel Sharkey ◽  
Alan G. Dawson ◽  
David A. Moore ◽  
...  

AbstractWe hypothesized that small molecule transcriptional perturbation could be harnessed to target a cellular dependency involving protein arginine methyltransferase 5 (PRMT5) in the context of methylthioadenosine phosphorylase (MTAP) deletion, seen frequently in malignant pleural mesothelioma (MPM). Here we show, that MTAP deletion is negatively prognostic in MPM. In vitro, the off-patent antibiotic Quinacrine efficiently suppressed PRMT5 transcription, causing chromatin remodelling with reduced global histone H4 symmetrical demethylation. Quinacrine phenocopied PRMT5 RNA interference and small molecule PRMT5 inhibition, reducing clonogenicity in an MTAP-dependent manner. This activity required a functional PRMT5 methyltransferase as MTAP negative cells were rescued by exogenous wild type PRMT5, but not a PRMT5E444Q methyltransferase-dead mutant. We identified c-jun as an essential PRMT5 transcription factor and a probable target for Quinacrine. Our results therefore suggest that small molecule-based transcriptional perturbation of PRMT5 can leverage a mutation-selective vulnerability, that is therapeutically tractable, and has relevance to 9p21 deleted cancers including MPM.


2019 ◽  
Vol 10 (7) ◽  
pp. 1033-1038 ◽  
Author(s):  
Hong Lin ◽  
Min Wang ◽  
Yang W. Zhang ◽  
Shuilong Tong ◽  
Raul A. Leal ◽  
...  

2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Daniel P Harris

TNF-α initiates the expression of genes involved in the recruitment, adhesion, and transmigration of leukocytes to sites of inflammation. Here, we report that the protein arginine methyltransferase PRMT5 is required for the transcriptional induction of the pro-inflammatory chemokine CXCL10 (IP-10) in endothelial cells. Depletion of PRMT5 by siRNA results in significantly diminished TNF-α-induced CXCL10 mRNA expression, but does not affect expression of other chemokines, such as MCP-1 or IL-8. Chromatin immunoprecipitation experiments of the CXCL10 proximal promoter show the presence of symmetrical dimethylated arginine (sDMA)-containing proteins upon exposure to TNF-α. This methylation is completely lost when PRMT5 is removed from cells by siRNA. Using immunoprecipitation, we show that PRMT5 enhances CXCL10 expression by methylating the RelA (p65) subunit of NF-κB. In summary, we have identified that PRMT5 is a novel regulator of CXCL10 expression. Further, we have discovered that PRMT5 methylates NF-κB, a finding which may further knowledge of the post-translational code governing NF-κB regulation and target specificity.


2017 ◽  
Vol 128 (1) ◽  
pp. 517-530 ◽  
Author(s):  
Hironari Tamiya ◽  
Hyungsoo Kim ◽  
Oleksiy Klymenko ◽  
Heejung Kim ◽  
Yongmei Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document