scholarly journals Supplementation of L‐arginine and/or inhibition of arginase enhance the effect of inhaled NO on airway function of hyperoxia‐exposed rat pups

2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Aliya Zaidi ◽  
Anjum Jafri ◽  
Syed I. A. Zaidi
Keyword(s):  
Rat Pups ◽  
1986 ◽  
Vol 112 (3) ◽  
pp. 396-403 ◽  
Author(s):  
Jean Paul Dupouy ◽  
Alain Chatelain

Abstract. CBG and pituitary-adrenal activities were investigated in intact rat foetuses, in newborns spontaneously delivered by vaginal way and in postmature foetuses from mothers with delayed parturition caused by daily progesterone injection from day 20 of gestation. The postmature foetuses had lower body weights and higher adrenal weights on day 22, 23 and 24 of gestation than newborns of the same conceptional age. The corticosterone binding capacity of the plasma as well as the binding capacity of CBG for corticosterone decreased in intact foetuses for the last 3 days of gestation and stayed very low in pups from day 0 to day 8 postpartum. These parameters decreased more slowly in postmature foetuses; however, the differences between the latter and intact foetuses or newborns were not statistically significant. Similar evolution occurred in intact pregnant and suckling females as well as in females with prolonged gestation. The fall in CBG activity in normal rat pups and the subsequent rise in free steroids could explain a sharp decrease in plasma ACTH levels as well as the drop in adrenal and plasma corticosterone concentration. In foetuses with prolonged gestation, the same phenomenon did not occur. Stress conditions produced by maintaining growing foetuses in utero and the development of severe jaundice maintained high ACTH levels. In contrast, the fall in adrenal and plasma corticosterone concentrations in spite of the high level of circulating ACTH could be mainly due to the progesterone inhibition of the steroidogenic activity of the foetal adrenals.


Author(s):  
Lorena Ribeiro Silva ◽  
José R. Paranaíba ◽  
Leandro Véspoli Campo ◽  
Vinícius de Almeida Vieira ◽  
Rita de Cássia da Silveira e Sá, Martha de Oliveira Guerra ◽  
...  

2018 ◽  
Vol 17 (2) ◽  
pp. 132-143 ◽  
Author(s):  
Mehmet Eray Alcigir ◽  
Halef Okan Dogan ◽  
Begum Yurdakok Dikmen ◽  
Kubra Dogan ◽  
Sevil Atalay Vural ◽  
...  

Background & Objective: Aroclor 1254 is a widespread toxic compound of Polychlorinated Biphenyls (PCBs), which can create significant nervous problems. No remedies have been found to date. The aim of this study was to reveal the damage that occurs in the central nervous system of rat pups exposed to Aroclor 1254 in the prenatal period and to show the inhibiting effect of curcumin, which is a strong anti-oxidant and neuroprotective substance. Method: The study established 3 groups of adult female and male Wistar albino rats. The rats were mated within these groups and the offspring rats were evaluated within the group given Aroclor 1254 only (n=10) and the group was given both Aroclor 1254 and curcumin (n=10) and the control group (n=10). The groups were compared in respect of pathomorphological damage. The immunohistochemical evaluation was made of 8-hydroxdeoxyguanosine (8-OHdG), 4-hydroxynoneal (4HNE), myelin basic protein (MBP) expressions and TUNEL reaction. The biochemical evaluation was made of the changes in the TAS-TOS and Neuron Specific Enolase (NSE) levels. Damage was seen to have been reduced with curcumin in the 8OHdG and TUNEL reactions, especially in the forebrain and the midbrain, although the dosage applied did not significantly change TAS and TOS levels. Consequently, it was understood that Aroclor 1254 caused damage in the central nervous system of the pup in the prenatal period, and curcumin reduced these negative effects, particularly in the forebrain and the midbrain. Conclusion: It was concluded that curcumin could be a potential neuroprotective agent and would be more effective at higher doses.


1980 ◽  
Vol 48 (3) ◽  
pp. 505-510 ◽  
Author(s):  
L. Frank ◽  
J. Summerville ◽  
D. Massaro

Isoxsuprine, a beta-sympathomimetic agent used clinically to delay premature parturition and to possibly accelerate fetal lung maturation, was administered to pregnant rats at 48 and 24 h prior to delivery. Newborn rats were placed in 96-98% O2 (or room air) to determine if the prenatal isoxsuprine treatment compromised their tolerance to prolonged hyperoxic exposure. (Exogenous catecholamines are known to exacerbate O2 toxicity in adult animals). Survival of the isoxsuprine-treated pups in O2 (52%) was no different than for control neonates exposed to hyperoxia for 7 days (57%) (P = 0.22). Body weight, lung weight, lung protein, and DNA content of the newborns were also not altered by the prenatal isoxsuprine treatment. Lung antioxidant enzyme activities for superoxide dismutase, catalase, and glutathione peroxidase were the same at birth in the isoxsuprine-treated and control rat pups, and the enzyme activities increased in response to hyperoxic exposure in each group to an equivalent degree. Thus, in utero treatment with isoxsuprine had no apparent adverse effect on newborn rats exposed to a prolonged O2 challenge.


Author(s):  
Erika G. ◽  
Homer Nazeran ◽  
Carlos Ramos ◽  
Liza Rodriguez ◽  
Lidia Rascon ◽  
...  

2021 ◽  
Vol 41 (4) ◽  
pp. 722-728
Author(s):  
Yun Li ◽  
Hong-ying Yu ◽  
Kao-chuang Zhao ◽  
Xu-hong Ding ◽  
Yi Huang ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qingying Tang ◽  
Shuxia Chen ◽  
Hui Wu ◽  
Honghua Song ◽  
Yongjun Wang ◽  
...  

AbstractCongenital hypothyroidism (CH), a common neonatal endocrine disorder, can result in cognitive deficits if delay in diagnose and treatment. Dentate gyrus (DG) is the severely affected subregion of the hippocampus by the CH, where the dentate granule cells (DGCs) reside in. However, how CH impairs the cognitive function via affecting DGCs and the underlying mechanisms are not fully elucidated. In the present study, the CH model of rat pups was successfully established, and the aberrant dendrite growth of the DGCs and the impaired cognitive behaviors were observed in the offspring. Transcriptome analysis of hippocampal tissues following rat CH successfully identified that calcium/calmodulin-dependent protein kinase IV (CaMKIV) was the prominent regulator involved in mediating deficient growth of DGC dendrites. CaMKIV was shown to be dynamically regulated in the DG subregion of the rats following drug-induced CH. Interference of CaMKIV expression in the primary DGCs significantly reduced the spine density of dendrites, while addition of T3 to the primary DGCs isolated from CH pups could facilitate the spine growth of dendrites. Insights into relevant mechanisms revealed that CH-mediated CaMKIV deficiency resulted in the significant decrease of phosphorylated CREB in DGCs, in association with the abnormality of dendrites. Our results have provided a distinct cell type in hippocampus that is affected by CH, which would be beneficial for the treatment of CH-induced cognitive deficiency.


2021 ◽  
Vol 556 ◽  
pp. 39-44
Author(s):  
Mulin Liang ◽  
Hongxing Dang ◽  
Qinghe Li ◽  
Weiben Huang ◽  
Chengjun Liu

Sign in / Sign up

Export Citation Format

Share Document