scholarly journals Impact of allicin on enzyme activity, cytokine secretion, and gene expression dynamics in oxidatively‐stressed epithelial cells (1045.19)

2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Nathan Horn ◽  
Kolapo Ajuwon ◽  
Guy Miller ◽  
Olayiwola Adeola
2007 ◽  
Vol 177 (4S) ◽  
pp. 93-93
Author(s):  
Toshiyuki Tsunoda ◽  
Junichi Inocuchi ◽  
Darren Tyson ◽  
Seiji Naito ◽  
David K. Ornstein

FEBS Open Bio ◽  
2021 ◽  
Author(s):  
Sylvester Larsen ◽  
Jakob Benedict Seidelin ◽  
Johanne Davidsen ◽  
Katja Dahlgaard ◽  
Claus Henrik Nielsen ◽  
...  

2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


1998 ◽  
Vol 275 (4) ◽  
pp. G717-G722 ◽  
Author(s):  
Wisam F. Zakko ◽  
Carl L. Berg ◽  
John L. Gollan ◽  
Richard M. Green

Gluconeogenesis and glycogenolysis are essential hepatic functions required for glucose homeostasis. During the initial phase of hepatic regeneration, the immediate-early genes (IEG) are rapidly expressed, and the IEG RL-1 encodes for glucose-6-phosphatase (G-6- Pase). G-6- Pase is a microsomal enzyme essential for gluconeogenesis and glycogenolysis. This study employs a partial-hepatectomy model to examine the expression and activity of G-6- Pase. After partial hepatectomy, rat hepatic G-6- Pase gene expression is transcriptionally regulated, and mRNA levels are increased ≈30-fold. However, in contrast to this rapid gene induction, microsomal enzyme activity is unchanged after partial hepatectomy. Western blotting demonstrates that microsomal G-6- Pase protein expression is also unchanged after partial hepatectomy, and similar results are also noted in whole liver homogenate. Thus, despite marked induction in gene expression of the IEG G-6- Pase after partial hepatectomy, protein expression and enzyme activity remain unchanged. These data indicate that, although this hepatocyte IEG is transcriptionally regulated, the physiologically important level of regulation is posttranscriptional. This highlights the importance of correlating gene expression of IEG with protein expression and physiological function.


Sign in / Sign up

Export Citation Format

Share Document