Analysis of Septin 9 gene expression in laser microdissected colonic epithelial cells along the colorectal adenoma-carcinoma sequence

2011 ◽  
Vol 49 (05) ◽  
Author(s):  
A Kalmár ◽  
K Tóth ◽  
S Spisák ◽  
O Galamb ◽  
B Wichmann ◽  
...  
PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212850 ◽  
Author(s):  
Stephen M. Matthews ◽  
Melanie A. Eshelman ◽  
Arthur S. Berg ◽  
Walter A. Koltun ◽  
Gregory S. Yochum

2004 ◽  
Vol 279 (24) ◽  
pp. 25179-25188 ◽  
Author(s):  
Sang Hoon Rhee ◽  
Andrew C. Keates ◽  
Mary P. Moyer ◽  
Charalabos Pothoulakis

2015 ◽  
Vol 308 (9) ◽  
pp. C750-C757 ◽  
Author(s):  
Svetlana M. Nabokina ◽  
Mel Brendan Ramos ◽  
Judith E. Valle ◽  
Hamid M. Said

Microbiota of the large intestine synthesize considerable amount of vitamin B1 in the form of thiamine pyrophosphate (TPP). There is a specific high-affinity regulated carrier-mediated uptake system for TPP in human colonocytes (product of the SLC44A4 gene). The mechanisms of regulation of SLC44A4 gene expression are currently unknown. In this study, we characterized the SLC44A4 minimal promoter region and identified transcription factors important for basal promoter activity in colonic epithelial cells. The 5′-regulatory region of the SLC44A4 gene (1,022 bp) was cloned and showed promoter activity upon transient transfection into human colonic epithelial NCM460 cells. With the use of a series of 5′- and 3′-deletion luciferase reporter constructs, the minimal genomic region that required basal transcription of the SLC44A4 gene expression was mapped between nucleotides −178 and +88 (using the distal transcriptional start site as +1). Mutational analysis performed on putative cis-regulatory elements established the involvement of ETS/ELF3 [E26 transformation-specific sequence (ETS) proteins], cAMP-responsive element (CRE), and SP1/GC-box sequence motifs in basal SLC44A4 promoter activity. By means of EMSA, binding of ELF3 and CRE-binding protein-1 (CREB-1) transcription factors to the SLC44A4 minimal promoter was shown. Contribution of CREB into SLC44A4 promoter activity was confirmed using NCM460 cells overexpressing CREB. We also found high expression of ELF3 and CREB-1 in colonic (NCM460) compared with noncolonic (ARPE19) cells, suggesting their possible contribution to colon-specific pattern of SLC44A4 expression. This study represents the first characterization of the SLC44A4 promoter and reports the importance of both ELF3 and CREB-1 transcription factors in the maintenance of basal promoter activity in colonic epithelial cells.


2006 ◽  
Vol 97 (6) ◽  
pp. 1317-1327 ◽  
Author(s):  
Dezheng Zhao ◽  
Yanai Zhan ◽  
Huiyan Zeng ◽  
Mary P. Moyer ◽  
Christos S. Mantzoros ◽  
...  

2007 ◽  
Vol 292 (1) ◽  
pp. G315-G322 ◽  
Author(s):  
C. Caballero-Franco ◽  
K. Keller ◽  
C. De Simone ◽  
K. Chadee

Several studies have stressed the importance of the microbiota in the maintenance of the gastrointestinal epithelium. Administration of probiotic bacteria, supplements composed of microbiota constituents, was previously shown to diminish symptoms in patients suffering from inflammatory bowel diseases. This raises the possibility that probiotics may play an active role in enhancing the intestinal barrier at the mucosal surface. In this study, we investigated whether the clinically tested VSL#3 probiotic formula and/or its secreted components can augment the protective mucus layer in vivo and in vitro. For in vivo studies, Wistar rats were orally administered the probiotic mixture VSL#3 on a daily basis for seven days. After treatment, basal luminal mucin content increased by 60%. In addition, we exposed isolated rat colonic loops to the VSL#3 probiotic formula, which significantly stimulated colonic mucin (MUC) secretion and MUC2 gene expression; however, MUC1 and MUC3 gene expression were only slightly elevated. The effect of the VSL#3 mucin secretagogue was also tested in vitro by use of LS 174T colonic epithelial cells. In contrast to the animal studies, cultured cells incubated with VSL#3 bacteria did not exhibit increased mucin secretion. However, the bacterial secreted products contained in the conditioned media stimulated a remarkable mucin secretion effect. Among the three bacterial groups ( Lactobacilli, Bifidobacteria, and Streptococci) contained in VSL#3, the Lactobacillus species were the strongest potentiator of mucin secretion in vitro. A preliminary characterization of the putative mucin secretagogue suggested that it was a heat-resistant soluble compound, which is not sensitive to protease and DNase treatment. These findings contribute to a better understanding of the complex and beneficial interaction between colonic epithelial cells and intestinal bacteria.


2004 ◽  
Vol 286 (6) ◽  
pp. G1000-G1008 ◽  
Author(s):  
M. Mühlbauer ◽  
B. Allard ◽  
A. K. Bosserhoff ◽  
S. Kiessling ◽  
H. Herfarth ◽  
...  

Several effects of bile acids (BAs) on colonic epithelial cells (CECs) have been described, including induction of proliferation and apoptosis. Some of these effects are mediated through activation of the NF-κB transcriptional system. In this study, we investigated the molecular mechanisms underlying the BA-induced gene expression in CECs. The human CEC line HT-29 and primary human CECs were treated with dilutions of salts of deoxycholic acid (DCA) and taurodeoxycholic acid (TDCA). NF-κB binding activity was analyzed with EMSA, RelA translocation with immunofluorescence, and IκBα- and RelA-phosphorylation with Western blot analysis. IL-8 mRNA and protein expression were assessed by quantitative PCR and ELISA. Functional impact of NF-κB activation was determined by blocking the proteasome activity with MG132 or by preventing IKK activity with a dominant-negative IKKβ delivered by adenoviral dominant-negative (dn) IKKβ (Ad5dnIKKβ). DCA and TDCA induced IL-8 expression in a dose- and time-dependent manner. It is interesting that DCA but not TDCA induced IκBα-phophorylation, RelA translocation, and NF-κB binding activity. Accordingly, the proteasome inhibitor MG132 blocked DCA- but not TDCA-induced IL-8 gene expression. In contrast, TDCA-induced IL-8 gene expression correlated with enhanced RelA phosphorylation, which was blocked by Ad5dnIKKβ. Our data suggest that DCA-induced signal transduction mainly utilized the IκB degradation and RelA nuclear translocation pathway, whereas TDCA primarily induced IL-8 gene expression through RelA phosphorylation. These differences may have implications for the understanding of the pathophysiology of inflammation and carcinogenesis in the gut.


2022 ◽  
Author(s):  
Lulu Han ◽  
Rongrong Sun ◽  
Yong Wang ◽  
Jianming Luo ◽  
Xichun Peng

Lipid metabolism is closely related to the health of aging bodies, and its disorder often leads to cardiovascular diseases and chronic diseases. Dietary fat is one of the important sources...


Sign in / Sign up

Export Citation Format

Share Document