scholarly journals Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

2014 ◽  
Vol 28 (10) ◽  
pp. 4408-4419 ◽  
Author(s):  
Cecile Vernochet ◽  
Federico Damilano ◽  
Arnaud Mourier ◽  
Olivier Bezy ◽  
Marcelo A. Mori ◽  
...  
2020 ◽  
Vol 319 (6) ◽  
pp. E1053-E1060
Author(s):  
Logan K. Townsend ◽  
Henver S. Brunetta ◽  
Marcelo A. S. Mori

Obesity and insulin resistance (IR) are associated with endoplasmic reticulum (ER) stress and mitochondrial dysfunction in several tissues. Although for many years mitochondrial and ER function were studied separately, these organelles also connect to produce interdependent functions. Communication occurs at mitochondria-associated ER membranes (MAMs) and regulates lipid and calcium homeostasis, apoptosis, and the exchange of adenine nucleotides, among other things. Recent evidence suggests that MAMs contribute to organelle, cellular, and systemic metabolism. In obesity and IR models, metabolic tissues such as the liver, skeletal muscle, pancreas, and adipose tissue present alterations in MAM structure or function. The purpose of this mini review is to highlight the MAM disruptions that occur in each tissue during obesity and IR and its relationship with glucose homeostasis and IR. We also discuss the current controversy that surrounds MAMs’ role in the development of IR.


Function ◽  
2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Heather L Petrick ◽  
Kevin P Foley ◽  
Soumaya Zlitni ◽  
Henver S Brunetta ◽  
Sabina Paglialunga ◽  
...  

Abstract Obesity is associated with adipose tissue hypertrophy, systemic inflammation, mitochondrial dysfunction, and intestinal dysbiosis. Rodent models of high-fat diet (HFD)-feeding or genetic deletion of multifunctional proteins involved in immunity and metabolism are often used to probe the etiology of obesity; however, these models make it difficult to divorce the effects of obesity, diet composition, or immunity on endocrine regulation of blood glucose. We, therefore, investigated the importance of adipose inflammation, mitochondrial dysfunction, and gut dysbiosis for obesity-induced insulin resistance using a spontaneously obese mouse model. We examined metabolic changes in skeletal muscle, adipose tissue, liver, the intestinal microbiome, and whole-body glucose control in spontaneously hyperphagic C57Bl/6J mice compared to lean littermates. A separate subset of lean and obese mice was subject to 8 weeks of obesogenic HFD feeding, or to pair feeding of a standard rodent diet. Hyperphagia, obesity, adipose inflammation, and insulin resistance were present in obese mice despite consuming a standard rodent diet, and these effects were blunted with caloric restriction. However, hyperphagic obese mice had normal mitochondrial respiratory function in all tissues tested and no discernable intestinal dysbiosis relative to lean littermates. In contrast, feeding mice an obesogenic HFD altered the composition of the gut microbiome, impaired skeletal muscle mitochondrial bioenergetics, and promoted poor glucose control. These data show that adipose inflammation and redox stress occurred in all models of obesity, but gut dysbiosis and mitochondrial respiratory dysfunction are not always required for obesity-induced insulin resistance. Rather, changes in the intestinal microbiome and mitochondrial bioenergetics may reflect physiological consequences of HFD feeding.


2019 ◽  
Author(s):  
Frederique Van de Velde ◽  
Margriet Ouwens ◽  
Arsene-Helene Batens ◽  
Samyah Shadid ◽  
Bruno Lapauw ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1760-P
Author(s):  
DON MCCLAIN ◽  
NEERAJ K. SHARMA ◽  
FELIPE LORENZO ◽  
SHALINI JAIN ◽  
CARL D. LANGEFELD ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1812-P
Author(s):  
MARIA D. HURTADO ◽  
J.D. ADAMS ◽  
MARCELLO C. LAURENTI ◽  
CHIARA DALLA MAN ◽  
CLAUDIO COBELLI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document