Dose Proportionality and Pharmacokinetics of Oral Transmucosal Fentanyl Citrate 

1998 ◽  
Vol 88 (2) ◽  
pp. 305-309 ◽  
Author(s):  
James B. Streisand ◽  
Michael A. Busch ◽  
Talmage D. Egan ◽  
Barbara Gaylord Smith ◽  
Mason Gay ◽  
...  

Background The pharmacokinetics of a single dose (15 microg/kg) of oral transmucosal fentanyl citrate (OTFC) have been characterized. A range of doses may eventually be used in clinical practice. The goal of this study was to determine if the pharmacokinetics of OTFC are dose proportional for doses ranging from 200 to 1,600 microg. Methods Twelve healthy male volunteers were studied on four different occasions, receiving 200, 400, 800, and 1,600 microg OTFC in a double-blind, randomized protocol. Venous blood samples were collected at selected times during and after dosing for a 24-h period and assayed for fentanyl using a radioimmunoassay. Maximum concentration, time to maximum concentration, area under the curve, and elimination half-life were determined for each dose administered. In addition, respiratory rate, need for verbal prompting to breathe, and supplemental oxygen requirements were noted. Results Mean fentanyl concentration time curves were similarly shaped with increasing doses. Both peak concentrations and area under the curve increased linearly with an increase in dose, whereas time to reach peak serum concentrations did not vary significantly between doses. Except for the 200-microg dose, the apparent elimination half-life remained relatively constant (358-386 min). The incidence of low respiratory rate, supplemental oxygen requirement, and number of breathing prompts significantly increased with increasing doses. Conclusions Oral transmucosal fentanyl citrate exhibits dose-proportional pharmacokinetics over the dose range of 200-1,600 microg.

2015 ◽  
Vol 90 (5) ◽  
pp. 555-560 ◽  
Author(s):  
P.K. Sanyal ◽  
D. Rawte ◽  
A.E. Kerketta ◽  
N.K. Kumbhakar ◽  
D. Kumar ◽  
...  

AbstractThe influence of diet type and pre-treatment fasting on the kinetic disposition of albendazole was evaluated in Sahiwal heifers following oral and intra-ruminal administration of the drug. The anthelmintically active moiety albendazole sulphoxide appeared early and was eliminated early in cattle offered green fodder, with decreased maximum concentration (Cmax) and area under concentration–time curve (AUC) when the drug was administered both through oral and intra-ruminal routes. Further, the elimination half-life (t½β) revealed significantly increased values for albendazole sulphoxide in cattle administered albendazole through the intra-ruminal route. An increased AUC and t½β is reflective of increased bioavailability of albendazole in animals offered dry fodder. Increased values (P <  0.05) of Cmax, time to Cmax (Tmax), AUC and t½β for albendazole sulphoxide occurred in cattle with a pre-treatment 24-h fast, resulting in its increased bioavailability. Extrapolation of data of the active metabolite albendazole sulphoxide levels in terms of drug–parasite contact revealed increased exposure of parasites to the drug in cattle administered albendazole through the intra-ruminal route and with 24-h pre-treatment fasting.


2002 ◽  
Vol 46 (5) ◽  
pp. 1614-1616 ◽  
Author(s):  
Nelly Castro ◽  
Helgi Jung ◽  
Roberto Medina ◽  
Dinora González-Esquivel ◽  
Mario Lopez ◽  
...  

ABSTRACT After a single oral dose of praziquantel with 250 ml of grapefruit juice, the area under the concentration-time curve and the maximum concentration in plasma of praziquantel (C max) were significantly increased (C max for water treatment, 637.71 ± 128.5 ng/ml; and C max for grapefruit juice treatment, 1,037.65 ± 305.7 ng/ml, P < 0.05). No statistically significant differences were found in the time to maximum concentration of drug in plasma or elimination half-life.


2015 ◽  
Vol 90 (5) ◽  
pp. 624-629 ◽  
Author(s):  
N.K. Kumbhakar ◽  
P.K. Sanyal ◽  
D. Rawte ◽  
D. Kumar ◽  
A.E. Kerketta ◽  
...  

AbstractTo test the hypothesis that modulation of hepatic microsomal sulphoxidation and sulphonation by the cytochrome P450 inhibitor piperonyl butoxide could increase bioavailability of albendazole, the present study was undertaken to understand the pharmacokinetics of albendazole in goats at a dose of 7.5 mg kg− 1 body weight with and without co-administration with piperonyl butoxide at 63.0 mg kg− 1 body weight. Plasma albendazole sulphoxide metabolite, the anthelmintically active moiety, reached its maximum concentration of 0.322 ± 0.045 μg ml− 1 and 0.384 ± 0.013 μg ml− 1 at 18 h and 24 h after administration of albendazole alone and co-administration of albendazole with piperonyl butoxide, respectively. Analysis of the data revealed statistically increased albendazole sulphoxide levels at 24 (P <  0.001), 30 (P <  0.001) and 36 h (P <  0.01) after administration of albendazole with piperonyl butoxide, with statistically increased levels of albendazole sulphone at 24, 30 and 48 h after administration. No significance difference (P > 0.05) in values of maximum concentration (normal and calculated) could be observed between groups of goats. However, values of time to reach the concentration maximum (normal and calculated), area under the concentration–time curve (0–∞ and calculated), minimum residence time, distribution half-life, elimination half-life and total area under the first movement of plasma drug concentration–time curve were significantly higher (P <  0.05) in plasma levels of albendazole sulphoxide in goats following single oral co-administration of albendazole with piperonyl butoxide. The faecal egg count reduction and lower 95% confidence limit for the group treated with albendazole alone were 97 and 68%, while for co-administration of albendazole and piperonyl butoxide the values were 99 and 97%, respectively. The ED50 for egg hatch was 0.196, indicating suspected resistance to benzimidazole anthelmintics. The drug combination proved efficacious against an albendazole-resistant nematode parasite population in goats.


1998 ◽  
Vol 42 (2) ◽  
pp. 428-430 ◽  
Author(s):  
R. Wise ◽  
S. Jones ◽  
I. Das ◽  
J. M. Andrews

ABSTRACT A single 200-mg dose of clinafloxacin was given orally to each of nine healthy male volunteers, and the concentrations of the drug were measured in plasma, cantharidin-induced inflammatory fluid, and urine over the following 24 h (48 h in the case of urine). The mean maximum concentration in plasma was 1.34 μg/ml at a mean time of 1.8 h postdose. The mean maximum concentration in the inflammatory fluid was 1.3 μg/ml at 3.8 h postdose. The mean elimination half-life of clinafloxacin in plasma was 5.65 h. The overall penetration into the inflammatory fluid was 93.1%, as assessed by determining the ratio of area under the concentration-time curves. Recovery of clinafloxacin in urine was 58.8% by 24 h and 71.8% by 48 h postdose.


1996 ◽  
Vol 40 (1) ◽  
pp. 47-49 ◽  
Author(s):  
R Wise ◽  
D Mortiboy ◽  
J Child ◽  
J M Andrews

A single 200-mg oral dose of trovafloxacin (CP-99,219) was given to each of eight healthy male volunteers, and the concentrations of the drug were measured in plasma, cantharides-induced inflammatory fluid, and urine over the subsequent 36 h. The mean maximum concentration observed in plasma was 2.9 micrograms/ml at a mean time of 0.75 h postdose. The mean maximum concentration observed in inflammatory fluid was 1.2 micrograms/ml at 4.0 h postdose. The mean elimination half-life in plasma was 7.8 h. The overall penetration into inflammatory fluid was 64%, as assessed by determining the ratio of the area under the concentration-time curves. Recovery of the dose in urine within the first 36 h postdose was 5.0% of the administered dose. Our results indicate that trovafloxacin, at a dosage of 200 mg once or twice daily, should be adequate for the treatment of systemic infections caused by most common bacterial pathogens.


2021 ◽  
Vol 8 ◽  
Author(s):  
Ricardo Videla ◽  
Carla Sommardahl ◽  
Joe Smith ◽  
Deanna M. W. Schaefer ◽  
Sherry Cox

This study aimed to determine the pharmacokinetics of prednisolone following intravenous and oral administration in healthy adult alpacas. Healthy adult alpacas were given prednisolone (IV, n = 4), as well as orally (PO, n = 6). Prednisolone was administered IV once (1 mg/kg). Oral administration was once daily for 5 days (2 mg/kg). Each treatment was separated by a minimum 4 month washout period. Samples were collected at 0 (pre-administration), 0.083, 0.167, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 h after IV administration, and at 0 (pre-administration), 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, 24 after the first and 5th PO administration. Samples were also taken for serial complete blood count and biochemistry analysis. Prednisolone concentration was determined by high pressure liquid chromatography. Non-compartmental pharmacokinetic parameters were then determined. After IV administration clearance was 347 mL/kg/hr, elimination half-life was 2.98 h, and area under the curve was 2,940 h*ng/mL. After initial and fifth oral administration elimination half-life was 5.27 and 5.39 h; maximum concentration was 74 and 68 ng/mL; time to maximum concentration was 2.67 and 2.33 h; and area under the curve was 713 and 660 hr*ng/mL. Oral bioavailability was determined to be 13.7%. Packed cell volume, hemoglobin, and red blood cell counts were significantly decreased 5 days after the first PO administration, and serum glucose was significantly elevated 5 days after the first PO administration. In conclusion, serum concentrations of prednisolone after IV and PO administration appear to be similar to other veterinary species. Future research will be needed to determine the pharmacodynamics of prednisolone in alpacas.


2004 ◽  
Vol 101 (3) ◽  
pp. 729-737 ◽  
Author(s):  
Evan D. Kharasch ◽  
Dale Whittington ◽  
Christine Hoffer

Background Oral transmucosal fentanyl citrate (OTF) was developed to provide rapid analgesia and is specifically approved for treating breakthrough cancer pain. Fentanyl in OTF is absorbed across the oral mucosa, but a considerable portion is swallowed and absorbed enterally. Fentanyl metabolism is catalyzed by cytochrome P4503A4 (CYP3A). The role of intestinal or hepatic first-pass metabolism and CYP3A activity in OTF disposition is unknown. This investigation examined the influence of hepatic and intestinal CYP3A activity on the disposition and clinical effects of OTF. Methods Healthy volunteers (n = 12) were studied in an Institutional Review Board-approved, randomized, balanced, four-way crossover. They received OTF (10 microg/kg) after hepatic/intestinal CYP3A induction by rifampin, hepatic/intestinal CYP3A inhibition by troleandomycin, selective intestinal CYP3A inhibition by grapefruit juice, or nothing (control). Plasma fentanyl and norfentanyl concentrations were determined by mass spectrometry. Fentanyl effects were measured by dark-adapted pupil diameter and subjective self-assessments using visual analog scales. Results : Peak plasma fentanyl concentrations, time to peak, and maximum pupil diameter change from baseline were unchanged after rifampin, troleandomycin, and grapefruit juice. Fentanyl elimination, however, was significantly affected by CYP3A alterations. After control, rifampin, troleandomycin and grapefruit juice, respectively, area under the curve of plasma fentanyl versus time was 5.9 +/- 3.7, 2.2 +/- 0.8,* 10.4 +/- 8.9,* and 5.8 +/- 3.3 h x ng/ml; norfentanyl/fentanyl plasma area under the curve ratios were 0.92 +/- 0.63, 3.2 +/- 1.8,* 0.08 +/- 0.14,* and 0.67 +/- 0.33 (*P &lt; 0.05 versus control). Discussion Peak fentanyl concentrations and clinical effects after OTF were minimally affected by altering both intestinal and hepatic CYP3A activity, whereas fentanyl metabolism, elimination, and duration of effects were significantly affected; selective intestinal CYP3A inhibition had minimal effects. This suggests that first-pass metabolism minimally influences OTF bioavailability. When treating breakthrough pain, with careful attention to maximal mucosal absorption and minimal swallowing, CYP3A variability and drug interactions are unlikely to affect the onset or magnitude of OTF analgesia; however, duration may be affected.


1996 ◽  
Vol 40 (11) ◽  
pp. 2577-2581 ◽  
Author(s):  
D R Luke ◽  
G Foulds ◽  
S F Cohen ◽  
B Levy

To date, the clinical pharmacology of large intravenous doses of azithromycin has not been described. In the present study, single 2-h intravenous infusions of 1, 2, and 4 g of azithromycin were administered to three parallel groups (in each group, six received active drug and two received placebo) of healthy male subjects. Toleration (assessed by scores of subject-administered visual analog scale tests spanning 0 [good] to 10 [poor]), safety, pharmacokinetics, and serum motilin levels were monitored for up to 240 h after the start of each intravenous infusion. Mean nausea scores of 0.0, 0.0, 1.0, and 0.5 and abdominal cramping scores of 0.0, 0.0, 0.4, and 0.4 for 12-h periods after doses of 0, 1, 2, and 4 g of azithromycin, respectively, suggested that azithromycin was well tolerated. Because of the standardized 1-mg/ml infusates, all subjects in the 4-g dosing group complained of an urgent need to urinate. There were no consistent trends in endogenous motilin levels throughout the study. The maximum concentration of azithromycin in serum (10 micrograms/ml after a 4-g dose) and the area under the concentration-time curve (82 micrograms.h/ml after a 4-g dose) were dose related. The mean pharmacokinetic parameters were an elimination half-life of 69 h, total systemic clearance of 10 ml/min/kg, and a volume of distribution at steady state of 33.3 liters/kg. The pharmacokinetic results suggest that the long half-life of azithromycin is due to extensive uptake and slow release of the drug from tissues rather than an inability to clear the drug. Single intravenous doses of up to 4 g of azithromycin in healthy subjects are generally well tolerated, and quantifiable concentrations may persist in serum for 10 days or more.


2018 ◽  
Vol 10 (6) ◽  
pp. 88
Author(s):  
Sindhu Abraham ◽  
Rajamanickam Deveswaran ◽  
Jayaraman Anbu ◽  
Sharon Furtado ◽  
Bharath Srinivasan

Objective: The objective of this study was to investigate differences in pharmacokinetic patterns of immediate release tablet (IR) and compression coated tablet (CCT) of lornoxicam, proposed for the chronotherapeutic treatment of rheumatoid arthritis.Methods: The dosage forms were administered to two groups of white New Zealand rabbits (n=3), and the plasma drug levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pharmacokinetic parameters like maximum concentration (Cmax), time is taken to reach maximum concentration (Tmax), area under the curve (AUC), elimination half-life (t1/2) and Mean Residence Time (MRT) were determined.Results: In the case of IR tablets, the drug was detected within 15 min after oral administration and a Cmax of 1269.57±4.04 ng/ml were attained at 2±0.15 h. With CCT, the drug was detected only after 5 h and a Cmax of 1279.24±12.76 ng/ml were attained at 8±0.10 h. The CCT showed maximum drug release at the eighth hour in comparison to IR tablet which showed maximum release at the second hour of study.Conclusion: The predominant lag time prior to drug release from CCT is an indication that it is consistent with the requirements of chronopharmaceutical drug delivery. The results suggest that the compression coated tablet is a promising approach for chronotherapeutic management of rheumatoid arthritis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3479-3479 ◽  
Author(s):  
Naoki Takezako ◽  
Masatomo Miura ◽  
Akihisa Nagata ◽  
Naohiro Sekiguchi ◽  
Takenori Niioka ◽  
...  

Abstract Background: Multiple myeloma is still lethal disease. However, the prognosis of this disease has been improving according to the administration of novel agents. Among of these novel agents, lenalidomide is confirmed the validity of consolidation-maintenance setting by a randomized controlled study. The combination of clarithromycin, lenalidomide and dexamethasone (BiRd) has led to highly durable responses in newly diagnosed myeloma (Rossi A et al 2013). However, mechanism of clarithromycin against myeloma cells is not still clear. It is believed that clarithromycin increases the area under the curve and maximum concentration levels of corticosteroids. On the other hand, clarithromycin has an ability to interact with human MDR1 (ATP-binding Cassette Sub-family B Member 1 (ABCB1), P- glycoprotein). Furthermore, lenalidomide is a substrate of MDR1, a membrane efflux transporter ubiquitously expressed in human tissues, such as the small intestine, whose activity could decrease the bioavailability of lenalidomide. Therefore, we examined whether blood concentration of lenalidomide would change with the existence of clarithromycin. Aim: To investigate whether blood concentration of lenalidomide would change with the existence of clarithromycin. Method: Lenalidomide 15 mg (Revlimid; Celgene Corporation, Tokyo, Japan) was orally administered once daily at 08:00 hours according to the recommendations (day1-21) of a 28-day cycle. Dexamethasone (20mg) was administrated on day 1,8,15, and 22. Orally, from day 8 to 21, Clarithromycin 400mg was administrated twice daily. On day 7and 14 of Bird therapy, whole-blood samples were collected just before oral lenalidomide administration, and at 1, 2, 4, and 6 hours thereafter. Pharmacokinetic analysis of lenalidomide was carried out using the standard non-compartmental method using WinNonlin (version 5.2; Pharsight Co, Mountain View, CA). The elimination half-life was calculated from the log-linear regression of the terminal phase of the concentration–time curve using at least 3 sampling points (elimination half-life = ln2/ke; ke = elimination rate constant). The total AUC was calculated using the linear trapezoidal rule. Results: Twenty five patients, who were obtained written informed consent, were enrolled in this study from April 2012 to June 2014. Mean plasma lenalidomide concentrations are shown in Figure 1. According to administration of clarithromycin, plasma concentrations of lenalidomide elevated at 2, 3, and 4 hour, respectably (p=0.045, p=0.039, p=0.042). Furthermore, baseline plasma concentration of lenalidomide was not affected by administration of clarithromycin (p=0.132). On the other hand, AUC24 were not affected by addition of clarithromycin (p=0.213) (Figure 2). In some patients, blood concentration of lenalidomide extremely increased administration of clarithromycin. These patients had wild type of ABCB1, C3435T genotype (C/C) (p=0.036). The other patients who were moderate affected to clarithromycin administration were mutated types (C/T or T/T). Nineteen patients obtained at least VGPR (sCR (9), VGPR (10)). The major adverse event (AE) was skin rush; however, it was manageable, except one patient (Grade 3). Hematological AEs were well tolerable (i.e. Grade 1 or 2, thrombocytopenia). No patient died during BiRd therapy. Discussion: In MM-001 trial, lenalidomide led anti-MM response according to dose dependent manner (Richardson P, et al. 2002). In addition, hematological AEs, especially thrombocytopenia were significant related to AUC24 (p<0.001). Our trial revealed that administration of clarithromycin led to elevate the maximum concentration of lenalidomide acceding to raising the absorption via inhibition of MDR1. On the other hand, administration of clarithromycin did not affect to the baseline plasma concentration of lenalidomide, so we considered that administration of clarithromycin did not affect to renal excretion. For this reason, if the renal function was sufficient, lenalidomide was excreted immediately to urine, so, AUC24 might not rise and toxicities might be tolerable. In conclusion, clarithromycin inhibits MDR1 which is a membrane efflux transporter expressed in the small intestine and raise absorption of lenalidomide. Further studies are warranted. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document