scholarly journals Pharmacokinetics of Orally Administered Prednisolone in Alpacas

2021 ◽  
Vol 8 ◽  
Author(s):  
Ricardo Videla ◽  
Carla Sommardahl ◽  
Joe Smith ◽  
Deanna M. W. Schaefer ◽  
Sherry Cox

This study aimed to determine the pharmacokinetics of prednisolone following intravenous and oral administration in healthy adult alpacas. Healthy adult alpacas were given prednisolone (IV, n = 4), as well as orally (PO, n = 6). Prednisolone was administered IV once (1 mg/kg). Oral administration was once daily for 5 days (2 mg/kg). Each treatment was separated by a minimum 4 month washout period. Samples were collected at 0 (pre-administration), 0.083, 0.167, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 h after IV administration, and at 0 (pre-administration), 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, 24 after the first and 5th PO administration. Samples were also taken for serial complete blood count and biochemistry analysis. Prednisolone concentration was determined by high pressure liquid chromatography. Non-compartmental pharmacokinetic parameters were then determined. After IV administration clearance was 347 mL/kg/hr, elimination half-life was 2.98 h, and area under the curve was 2,940 h*ng/mL. After initial and fifth oral administration elimination half-life was 5.27 and 5.39 h; maximum concentration was 74 and 68 ng/mL; time to maximum concentration was 2.67 and 2.33 h; and area under the curve was 713 and 660 hr*ng/mL. Oral bioavailability was determined to be 13.7%. Packed cell volume, hemoglobin, and red blood cell counts were significantly decreased 5 days after the first PO administration, and serum glucose was significantly elevated 5 days after the first PO administration. In conclusion, serum concentrations of prednisolone after IV and PO administration appear to be similar to other veterinary species. Future research will be needed to determine the pharmacodynamics of prednisolone in alpacas.

Author(s):  
Gabriela A. Albarellos ◽  
Laura Montoya ◽  
Graciela A.A. Denamiel ◽  
Sabrina M. Passini ◽  
María F. Landoni

The aim of the present study was to describe the plasma pharmacokinetic profile and skin concentrations of lincomycin after intravenous administration of a 15% solution and oral administration of 300 mg tablets at a dosing rate of 15 mg/kg to cats. Susceptibility of staphylococci (n = 31) and streptococci (n = 23) strains isolated from clinical cases was also determined. Lincomycin plasma and skin concentrations were determined by microbiological assay using Kocuria rhizophila ATCC 9341 as test microorganism. Susceptibility was established by the antimicrobial disc diffusion test. Individual lincomycin plasma concentration–time curves were analysed by a non-compartmental approach. After intravenous administration, volume of distribution, body clearance and elimination half-life were 0.97 L/kg ± 0.15 L/kg, 0.17 L/kg ± 0.06 L/h.kg and 4.20 h ± 1.12 h, respectively. After oral administration, peak plasma concentration, time of maximum plasma concentration and bioavailability were 22.52 µg/mL ± 10.97 µg/mL, 0.80 h ± 0.11 h and 81.78% ± 24.05%, respectively. Two hours after lincomycin administration, skin concentrations were 17.26 µg/mL ± 1.32 µg/mL (intravenous) and 16.58 µg/mL ± 0.90 µg/mL (oral). The corresponding skin: plasma ratios were 2.08 ± 0.47 (intravenous) and 1.84 ± 0.97 (oral). The majority of staphylococci and streptococci tested in this study were susceptible to lincosamides (87.09% and 69.56%, respectively). In conclusion, lincomycin administered orally at the assayed dose showed a good pharmacokinetic profile, with a long elimination half-life and effective skin concentration. Therefore, it could be a good first option for treating skin infections in cats.


2016 ◽  
Vol 4 (2) ◽  
pp. 144
Author(s):  
Ashraf El-Komy ◽  
Taha Attia ◽  
Amera Abd El Latif ◽  
Hanem Fathy

The pharmacokinetics of marbofloxacin was studied following a single intravenous, oral administration in normal broiler chickens and repeated oral administrations in normal and experimentally E.coli infected broiler chickens. The pharmacokinetic parameters following a single intravenous injection of 2 mg/kg b.wt., revealed that marbofloxacin obeyed a two compartments open model, distribution half-life (t0.5(α)) was 0.25±0.02 h, volume of distribution (Vdss) was 0.76±0.08 L/kg, elimination half-life (t0.5(β)) was 5.43±0.87 h and total body clearance (CLtot) was 0.09±0.002 l/kg/h. Following a single oral administration, marbofloxacin was rapidly and efficiently absorbed through gastrointestinal tract of chickens as the absorption half-life (t0.5 (ab): 0.62±0.02 h). Maximum serum concentration (Cmax) was 1.15±0.01 μg/ml, reached its maximum time (tmax) at 2.53±0.04 h, elimination half-life (t0.5 (el)) was 7.36±0.20 h indicating the tendency of chickens to eliminate marbofloxacin in slow rate. Oral bioavailability was 73.57± 1.90 % indicating good absorption of marbofloxacin after oral administration. Serum concentrations of marbofloxacin following repeated oral administration of 2 mg/kg b.wt. once daily for five consecutive days, peaked 2 hours after each oral dose with lower significant values recorded in experimentally infected broiler chickens than in normal ones. Tissues residues of marbofloxacin in slaughtered normal chickens was highly in those tissues lung, liver, and kidneys in chickens and the chicken must not be slaughtered before 3 days of stopping of drug administration. It was concluded that the in- vitro protein binding was 12.33±0.82%.


1992 ◽  
Vol 26 (1) ◽  
pp. 11-13 ◽  
Author(s):  
Robin L. Davis ◽  
Ronald W. Quenzer ◽  
H. William Kelly ◽  
J. Robert Powell

OBJECTIVE: Although the effect of individual enzyme inhibitors on hepatic microsomal enzyme activity has been studied extensively, little data exist on the effects of combinations of inhibiting agents. The purpose of this study was to investigate the effect of the addition of a second hepatic oxidative enzyme inhibitor on the inhibition of metabolism in subjects already maximally inhibited by cimetidine. Ciprofloxacin was used as the second inhibitor. DESIGN: In a randomized crossover sequence, subjects received theophylline 5 mg/kg on day 6 of therapy with cimetidine 2400 mg/d, ciprofloxacin 1 g/d, both drugs, or while drug-free. SETTING: National Institutes of Health-funded General Clinical Research Center. PARTICIPANTS: Eight normal volunteers (6 men, 2 women; mean age 25.2 y). OUTCOME MEASURES: Theophylline pharmacokinetic parameters after each treatment were determined by model independent pharmacokinetic analysis. Statistical analysis of the data for differences between treatments was assessed by ANOVA for repeated measures. RESEARCH: When administered alone, ciprofloxacin and cimetidine caused a significant increase in theophylline elimination half-life and a decrease in clearance. Theophylline elimination half-life was significantly longer during combined therapy compared with either drug alone. Theophylline clearance was lower during combined treatment, although this relationship did not reach statistical significance. CONCLUSIONS: The addition of a second enzyme inhibitor in subjects receiving maximally inhibiting doses of cimetidine can produce a further decrease in the hepatic metabolism of drugs that are metabolized by the cytochrome P-450 microsomal enzyme system. As cimetidine and ciprofloxacin are frequently used together for a variety of common clinical indications, clinicians should be aware of this drug interaction and should consider that a similar effect may occur when other enzyme inhibitors are used concomitantly.


2018 ◽  
Vol 10 (6) ◽  
pp. 88
Author(s):  
Sindhu Abraham ◽  
Rajamanickam Deveswaran ◽  
Jayaraman Anbu ◽  
Sharon Furtado ◽  
Bharath Srinivasan

Objective: The objective of this study was to investigate differences in pharmacokinetic patterns of immediate release tablet (IR) and compression coated tablet (CCT) of lornoxicam, proposed for the chronotherapeutic treatment of rheumatoid arthritis.Methods: The dosage forms were administered to two groups of white New Zealand rabbits (n=3), and the plasma drug levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pharmacokinetic parameters like maximum concentration (Cmax), time is taken to reach maximum concentration (Tmax), area under the curve (AUC), elimination half-life (t1/2) and Mean Residence Time (MRT) were determined.Results: In the case of IR tablets, the drug was detected within 15 min after oral administration and a Cmax of 1269.57±4.04 ng/ml were attained at 2±0.15 h. With CCT, the drug was detected only after 5 h and a Cmax of 1279.24±12.76 ng/ml were attained at 8±0.10 h. The CCT showed maximum drug release at the eighth hour in comparison to IR tablet which showed maximum release at the second hour of study.Conclusion: The predominant lag time prior to drug release from CCT is an indication that it is consistent with the requirements of chronopharmaceutical drug delivery. The results suggest that the compression coated tablet is a promising approach for chronotherapeutic management of rheumatoid arthritis.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3479-3479 ◽  
Author(s):  
Naoki Takezako ◽  
Masatomo Miura ◽  
Akihisa Nagata ◽  
Naohiro Sekiguchi ◽  
Takenori Niioka ◽  
...  

Abstract Background: Multiple myeloma is still lethal disease. However, the prognosis of this disease has been improving according to the administration of novel agents. Among of these novel agents, lenalidomide is confirmed the validity of consolidation-maintenance setting by a randomized controlled study. The combination of clarithromycin, lenalidomide and dexamethasone (BiRd) has led to highly durable responses in newly diagnosed myeloma (Rossi A et al 2013). However, mechanism of clarithromycin against myeloma cells is not still clear. It is believed that clarithromycin increases the area under the curve and maximum concentration levels of corticosteroids. On the other hand, clarithromycin has an ability to interact with human MDR1 (ATP-binding Cassette Sub-family B Member 1 (ABCB1), P- glycoprotein). Furthermore, lenalidomide is a substrate of MDR1, a membrane efflux transporter ubiquitously expressed in human tissues, such as the small intestine, whose activity could decrease the bioavailability of lenalidomide. Therefore, we examined whether blood concentration of lenalidomide would change with the existence of clarithromycin. Aim: To investigate whether blood concentration of lenalidomide would change with the existence of clarithromycin. Method: Lenalidomide 15 mg (Revlimid; Celgene Corporation, Tokyo, Japan) was orally administered once daily at 08:00 hours according to the recommendations (day1-21) of a 28-day cycle. Dexamethasone (20mg) was administrated on day 1,8,15, and 22. Orally, from day 8 to 21, Clarithromycin 400mg was administrated twice daily. On day 7and 14 of Bird therapy, whole-blood samples were collected just before oral lenalidomide administration, and at 1, 2, 4, and 6 hours thereafter. Pharmacokinetic analysis of lenalidomide was carried out using the standard non-compartmental method using WinNonlin (version 5.2; Pharsight Co, Mountain View, CA). The elimination half-life was calculated from the log-linear regression of the terminal phase of the concentration–time curve using at least 3 sampling points (elimination half-life = ln2/ke; ke = elimination rate constant). The total AUC was calculated using the linear trapezoidal rule. Results: Twenty five patients, who were obtained written informed consent, were enrolled in this study from April 2012 to June 2014. Mean plasma lenalidomide concentrations are shown in Figure 1. According to administration of clarithromycin, plasma concentrations of lenalidomide elevated at 2, 3, and 4 hour, respectably (p=0.045, p=0.039, p=0.042). Furthermore, baseline plasma concentration of lenalidomide was not affected by administration of clarithromycin (p=0.132). On the other hand, AUC24 were not affected by addition of clarithromycin (p=0.213) (Figure 2). In some patients, blood concentration of lenalidomide extremely increased administration of clarithromycin. These patients had wild type of ABCB1, C3435T genotype (C/C) (p=0.036). The other patients who were moderate affected to clarithromycin administration were mutated types (C/T or T/T). Nineteen patients obtained at least VGPR (sCR (9), VGPR (10)). The major adverse event (AE) was skin rush; however, it was manageable, except one patient (Grade 3). Hematological AEs were well tolerable (i.e. Grade 1 or 2, thrombocytopenia). No patient died during BiRd therapy. Discussion: In MM-001 trial, lenalidomide led anti-MM response according to dose dependent manner (Richardson P, et al. 2002). In addition, hematological AEs, especially thrombocytopenia were significant related to AUC24 (p<0.001). Our trial revealed that administration of clarithromycin led to elevate the maximum concentration of lenalidomide acceding to raising the absorption via inhibition of MDR1. On the other hand, administration of clarithromycin did not affect to the baseline plasma concentration of lenalidomide, so we considered that administration of clarithromycin did not affect to renal excretion. For this reason, if the renal function was sufficient, lenalidomide was excreted immediately to urine, so, AUC24 might not rise and toxicities might be tolerable. In conclusion, clarithromycin inhibits MDR1 which is a membrane efflux transporter expressed in the small intestine and raise absorption of lenalidomide. Further studies are warranted. Figure 1 Figure 1. Figure 2 Figure 2. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 8 ◽  
Author(s):  
Joe S. Smith ◽  
Jonathan P. Mochel ◽  
Windy M. Soto-Gonzalez ◽  
Rebecca R. Rahn ◽  
Bryanna N. Fayne ◽  
...  

Background: Ruminant species are at risk of developing abomasal ulceration, but there is a lack of pharmacokinetic data for anti-ulcer therapies, such as the proton pump inhibitor pantoprazole, in goats.Objective: The primary study objective was to estimate the plasma pharmacokinetic parameters for pantoprazole in adult goats after intravenous administration. A secondary objective was to describe the pharmacokinetic parameters for the metabolite, pantoprazole sulfone, in goats.Methods: Pantoprazole was administered intravenously to six adult goats at a dose of 1 mg/kg. Plasma samples were collected over 36h and analyzed via reverse phase high performance liquid chromatography for determination of pantoprazole and pantoprazole sulfone concentrations. Pharmacokinetic parameters were determined by non-compartmental analysis.Results: Plasma clearance, elimination half-life, and volume of distribution of pantoprazole were estimated at 0.345 mL/kg/min, 0.7 h, and 0.9 L/kg, respectively following IV administration. The maximum concentration, elimination half-life and area under the curve of pantoprazole sulfone were estimated at 0.1 μg/mL, 0.8 h, and 0.2 hr*μg/mL, respectively. The global extraction ratio was estimated 0.00795 ± 0.00138. All animals had normal physical examinations after conclusion of the study.Conclusion: The reported plasma clearance for pantoprazole is lower than reported for foals, calves, and alpacas. The elimination half-life appears to be &lt; that reported for foals and calves. Future pharmacodynamic studies are necessary for determination of the efficacy of pantoprazole on acid suppression in goats.


2002 ◽  
Vol 46 (5) ◽  
pp. 1614-1616 ◽  
Author(s):  
Nelly Castro ◽  
Helgi Jung ◽  
Roberto Medina ◽  
Dinora González-Esquivel ◽  
Mario Lopez ◽  
...  

ABSTRACT After a single oral dose of praziquantel with 250 ml of grapefruit juice, the area under the concentration-time curve and the maximum concentration in plasma of praziquantel (C max) were significantly increased (C max for water treatment, 637.71 ± 128.5 ng/ml; and C max for grapefruit juice treatment, 1,037.65 ± 305.7 ng/ml, P < 0.05). No statistically significant differences were found in the time to maximum concentration of drug in plasma or elimination half-life.


1988 ◽  
Vol 6 (8) ◽  
pp. 1321-1327 ◽  
Author(s):  
K A Rodvold ◽  
D A Rushing ◽  
D A Tewksbury

A study was carried out to examine the effect, if any, of obesity on doxorubicin pharmacokinetics. Body weight was found to be significantly related to doxorubicin clearance (r = -.75; P less than .001) and elimination half-life (r = .62; P = .003). Thus, the contribution of obesity on pharmacokinetics of antineoplastic agents should be taken into consideration in the analysis of clinical data with respect to toxicity and tumor response. Twenty-one patients were studied with their first course of doxorubicin (50 to 70 mg/m2) administered as a 60-minute intravenous (IV) infusion. Patients were divided into three groups on the basis of percentage of ideal body weight (IBW): normal (less than 115% IBW), mildly obese (115% to 130% IBW), and obese (greater than 130% IBW). Blood samples were collected up to 48 hours after the infusion and analyzed for doxorubicin and its metabolite, doxorubicinol, by high performance liquid chromatography. Doxorubicin area under the curve (AUC) was greater in obese than in normal patients (2,209 v 1,190 ng h/mL; P less than .05), yielding correspondingly reduced systemic clearance of the agent in obese patients (891 v 1,569 mL/min; P less than .001). The mean elimination half-life (T1/2) was 20.4 hours in the obese patients and 13.0 hours in the normal patients. The apparent volume of distribution (Vss) was not significantly different among the three groups of patients, indicating that the prolonged T1/2 in the obese patients is due to the reduction in clearance. The AUC and T1/2 of doxorubicinol were similar among all patient groups.


2003 ◽  
Vol 99 (2) ◽  
pp. 466-475 ◽  
Author(s):  
Christopher M. Bernards ◽  
Danny D. Shen ◽  
Emily S. Sterling ◽  
Jason E. Adkins ◽  
Linda Risler ◽  
...  

Background The ability of epinephrine to improve the efficacy of epidurally administered drugs is assumed to result from local vasoconstriction and a consequent decrease in drug clearance. However, because drug concentration in the epidural space has never been measured, our understanding of the effect of epinephrine on epidural pharmacokinetics is incomplete. This study was designed to characterize the effect of epinephrine on the epidural, cerebrospinal fluid, and plasma pharmacokinetics of epidurally administered opioids. Methods Morphine plus alfentanil, fentanyl, or sufentanil was administered epidurally with and without epinephrine (1:200,000) to pigs. Opioid concentration was subsequently measured in the epidural space, central venous plasma, and epidural venous plasma, and these data were used to calculate relevant pharmacokinetic parameters. Results The pharmacokinetic effects of epinephrine varied by opioid and by sampling site. For example, in the lumbar epidural space, epinephrine increased the mean residence time of morphine but decreased that of fentanyl and sufentanil. Epinephrine had no effect on the terminal elimination half-life of morphine in the epidural space, but it decreased that of fentanyl and sufentanil. In contrast, in the lumbar intrathecal space, epinephrine had no effect on the pharmacokinetics of alfentanil, fentanyl, or sufentanil, but it increased the area under the concentration-time curve of morphine and decreased its elimination half-life. Conclusions The findings indicate that the effects of epinephrine on the spinal pharmacokinetics of these opioids are complex and often antithetical across compartments and opioids. In addition, the data clearly indicate that the pharmacokinetic effects of epinephrine in spinal "compartments" cannot be predicted from measurements of drug concentration in plasma, as has been assumed for decades.


2003 ◽  
Vol 14 (5) ◽  
pp. 263-270
Author(s):  
Linghui Kong ◽  
John S Cooperwood ◽  
Shu-Hui Christine Huang ◽  
Chung K Chu ◽  
F Douglas Boudinot

3′-Azido-2′, 3′-dideoxyuridine (AZDU, AzddU, CS-87) has been shown to have potent anti-HIV activity in vitro. However, the compound exhibits a relatively short half-life and incomplete oral bioavailability in humans. In an effort to improve the pharmacokinetic properties of AZDU, prodrug 3′-azido-2′,3′-dideoxyuridine-5′- O-valinate hydrochloride (AZDU-VAL) was synthesized by the esterification of 5′-OH function in AZDU. The objective of this study was to investigate the biotransformation and pharmacokinetics of AZDU-VAL along with its antiviral parent compound AZDU following intravenous and oral administration to rats. Adult male Sprague-Dawley rats were administered AZDU or AZDU-VAL by intravenous injection or oral gavage. Concentrations of AZDU-VAL and AZDU were determined by HPLC. Pharmacokinetic parameters were generated by area-moment analysis. The bioavailability of AZDU after oral administration was approximately 53%. The terminal phase half-life of the nucleoside analogue ranged between 0.6 h after intravenous administration and 1 h following oral administration. In vivo the prodrug was rapidly and efficiently biotransformed to yield AZDU following intravenous and oral administration. The apparent availability of AZDU was virtually complete following oral administration of prodrug AZDU-VAL averaging 101%. The bioavailability of AZDU following intravenous administration of AZDU-VAL averaged 106%. In summary, the disposition of AZDU was dose dependent over the dose range of 25–100 mg/kg. Renal clearance and steady state volume of distribution were lower at the higher dose level. Prodrug AZDU-VAL demonstrated improved oral bioavailability as evidenced by complete absorption and efficient bioconversion to AZDU. The results suggest that AZDU-VAL may be a promising prodrug for the delivery of AZDU.


Sign in / Sign up

Export Citation Format

Share Document