Effects on Synaptic Inhibition in the Hippocampus Do Not Underlie the Amnestic and Convulsive Properties of the Nonimmobilizer 1,2-Dichlorohexafluorocyclobutane

2004 ◽  
Vol 101 (1) ◽  
pp. 66-74 ◽  
Author(s):  
Misha Perouansky ◽  
Robert A. Pearce

Background Although it does not suppress movement in response to noxious stimuli, the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (F6, also known as 2N) does cause amnesia and seizures. These occur at 0.48 and 1.3 times, respectively, the concentrations that are predicted from its lipid solubility to cause immobility. The molecular and cellular basis of these effects is not known. The ionotropic gamma-aminobutyric acid type A (GABAA) receptor is modulated strongly by anesthetics, and it plays an important role in many seizure models. Also, the hippocampus is a structure central to the formation of memory and is susceptible to seizure generation. The authors therefore investigated the effect of F6 on GABAA receptor- mediated inhibition in hippocampal neurons. Methods Transverse hippocampal slices were prepared from young (12- to 21-day-old) Sprague-Dawley rats. Inhibitory postsynaptic currents were recorded from hippocampal CA1 pyramidal cells in the presence of ionotropic glutamate receptor antagonists. F6 was applied with the bath solution. The concentration of F6 achieved during the experiment at the location of synaptic inhibition was derived using a diffusion model. Results At tissue concentrations of up to 75 microm (approximately 5 x predicted minimal alveolar concentration), F6 had no discernible effect on either the amplitude or the kinetics of GABA-mediated synaptic currents. Isoflurane, by contrast, prolonged the decay time constant of these currents at 100 microm (approximately 0.3 x minimal alveolar concentration). Conclusions At concentrations that bracket the in vivo amnestic and seizure-inducing range, F6 has no discernible effect on fast synaptic GABAA receptors in hippocampal CA1 pyramidal neurons. Synaptic GABAA receptors sharply discriminate between volatile anesthetics and a prototype nonimmobilizer. Similar in vivo effects of anesthetics and nonimmobilizers may be mediated by different cellular mechanisms.

Pharmacology ◽  
2018 ◽  
Vol 103 (1-2) ◽  
pp. 10-16 ◽  
Author(s):  
Alessia Cenani ◽  
Robert J. Brosnan ◽  
Heather K. Knych

Background: Propanidid is a γ-aminobutyric acid type A (GABAA) receptor agonist general anesthetic and its primary metabolite is 4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic acid (DOMBA). Despite having a high water solubility at physiologic pH that might predict low-affinity GABAA receptor interactions, DOMBA is reported to have no effect on GABAA receptor currents, possibly because the DOMBA concentrations studied were simply insufficient to modulate GABAA receptors. Our objectives were to measure the propanidid and DOMBA concentration responses on ­GABAA receptors and to measure the behavioral responses of DOMBA in mice at concentrations that affect GABAA receptor currents in vitro. Methods: GABAA receptors were expressed in oocytes using clones for the human GABAA α1, β2 and γ2s subunits. The effects of DOMBA (0.2–10 mmol/L) and propanidid (0.001–1 mmol/L) on oocyte GABAA currents were studied using standard 2-electrode voltage clamp techniques. Based on in vitro results, 6 mice received ­DOMBA 32 mg intraperitoneal and were observed for occurrence of neurologic effects and DOMBA plasma concentration was measured by liquid chromatography tandem mass spectrometry. Results: DOMBA both directly activates GABAA receptors and antagonizes its GABA-mediated opening in a concentration-dependent manner at concentrations between 5–10 and 0.5–10 mmol/L respectively. In vivo, DOMBA produced rapid onset sedation at plasma concentrations that correlate with direct GABAA receptor activation. Conclusion: DOMBA modulation of GABAA receptors is associated with sedation in mice. Metabolites of propanidid analogues currently in development may similarly modulate GABAA, and impaired elimination of these metabolites could produce clinically relevant neurophysiologic effects.


1999 ◽  
Vol 81 (3) ◽  
pp. 1296-1307 ◽  
Author(s):  
C. Andrew Chapman ◽  
Jean-Claude Lacaille

Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22°C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2–5 Hz oscillations in membrane potential, which caused rhythmic firing. At 32°C, mean oscillation frequency increased to 7.1 Hz. Oscillations were voltage dependent and were eliminated by hyperpolarizing cells 6–10 mV below spike threshold. Blockade of ionotropic glutamate and GABA synaptic transmission did not affect oscillations, indicating that they were not synaptically driven. Oscillations were eliminated by tetrodotoxin, suggesting that Na+ currents generate the depolarizing phase of oscillations. Oscillations were not affected by blocking Ca2+ currents with Cd2+ or Ca2+-free ACSF or by blocking the hyperpolarization-activated current ( I h) with Cs+. Both Ba2+ and a low concentration of 4-aminopyridine (4-AP) reduced oscillations but TEA did not. Theta-frequency oscillations were much less common in interneurons located in stratum oriens. Intrinsic membrane potential oscillations in LM cells of the CA1 region thus involve an interplay between inward Na+ currents and outward K+ currents sensitive to Ba2+ and 4-AP. These oscillations may participate in rhythmic inhibition and synchronization of pyramidal neurons during theta activity in vivo.


2020 ◽  
Vol 118 (1) ◽  
pp. e2020810118
Author(s):  
Ye Wang ◽  
Wing-Yu Fu ◽  
Kit Cheung ◽  
Kwok-Wang Hung ◽  
Congping Chen ◽  
...  

Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.


2001 ◽  
Vol 94 (2) ◽  
pp. 340-347 ◽  
Author(s):  
Koichi Nishikawa ◽  
M. Bruce MacIver

Background A relatively small number of inhibitory interneurons can control the excitability and synchronization of large numbers of pyramidal cells in hippocampus and other cortical regions. Thus, anesthetic modulation of interneurons could play an important role for the maintenance of anesthesia. The aim of this study was to compare effects produced by volatile anesthetics on inhibitory postsynaptic currents (IPSCs) of rat hippocampal interneurons. Methods Pharmacologically isolated gamma-aminobutyric acid type A (GABAA) receptor-mediated IPSCs were recorded with whole cell patch-clamp techniques in visually identified interneurons of rat hippocampal slices. Neurons located in the stratum radiatum-lacunosum moleculare of the CA1 region were studied. The effects of clinically relevant concentrations (1.0 rat minimum alveolar concentration) of halothane, enflurane, isoflurane, and sevoflurane were compared on kinetics of both stimulus-evoked and spontaneous GABAA receptor-mediated IPSCs in interneurons. Results Halothane (1.2 vol% approximately 0.35 mm), enflurane (2.2 vol% approximately 0.60 mm), isoflurane (1.4 vol% approximately 0.50 mm), and sevoflurane (2.7 vol% approximately 0.40 mm) preferentially depressed evoked IPSC amplitudes to 79.8 +/- 9.3% of control (n = 5), 38.2 +/- 8.6% (n = 6), 52.4 +/- 8.4% (n = 5), and 46.1 +/- 16.0% (n = 8), respectively. In addition, all anesthetics differentially prolonged the decay time constant of evoked IPSCs to 290.1 +/- 33.2% of control, 423.6 +/- 47.1, 277.0 +/- 32.2, and 529 +/- 48.5%, respectively. The frequencies of spontaneous IPSCs were increased by all anesthetics (twofold to threefold). Thus, the total negative charge transfer mediated by GABAA receptors between synaptically connected interneurons was enhanced by all anesthetics. Conclusions Volatile anesthetics differentially enhanced GABAA receptor-mediated synaptic inhibition in rat hippocampal interneurons, suggesting that hippocampal interneuron circuits are depressed by these anesthetics in an agent-specific manner.


2001 ◽  
Vol 94 (6) ◽  
pp. 1050-1057 ◽  
Author(s):  
Ratnakumari Lingamaneni ◽  
Matthew D. Krasowski ◽  
Andrew Jenkins ◽  
Tuyen Truong ◽  
Austin L. Giunta ◽  
...  

Background Positive modulation of gamma-aminobutyric acid type A (GABAA) receptor function is recognized as an important component of the central nervous system depressant effects of many general anesthetics, including propofol. The role for GABAA receptors as an essential site in the anesthetic actions of propofol was recently challenged by a report that the propofol analog 4-iodopropofol (4-iodo-2,6-diisopropylphenol) potentiated and directly activated GABAA receptors, yet was devoid of sedative-anesthetic effects in rats after intraperitoneal injection. Given the important implications of these findings for theories of anesthesia, the authors compared the effects of 4-iodopropofol with those of propofol using established in vivo and in vitro assays of both GABAA receptor-dependent and -independent anesthetic actions. Methods The effects of propofol and 4-iodopropofol were analyzed on heterologously expressed recombinant human GABAA alpha1beta2gamma2 receptors, evoked population spike amplitudes in rat hippocampal slices, and glutamate release from rat cerebrocortical synaptosomes in vitro. Anesthetic potency was determined by loss of righting reflex in Xenopus laevis tadpoles, in mice after intraperitoneal injection, and in rats after intravenous injection. Results Like propofol, 4-iodopropofol enhanced GABA-induced currents in recombinant GABAA receptors, inhibited synaptic transmission in rat hippocampal slices, and inhibited sodium channel-mediated glutamate release from synaptosomes, but with reduced potency. After intraperitoneal injection, 4-iodopropofol did not produce anesthesia in mice, but it was not detected in serum or brain. However, 4-iodopropofol did produce anesthesia in tadpoles (EC50 = 2.5 +/- 0.5 microM) and in rats after intravenous injection (ED50 = 49 +/- 6.2 mg/kg). Conclusions Propofol and 4-iodopropofol produced similar actions on several previously identified cellular and molecular targets of general anesthetic action, and both compounds induced anesthesia in tadpoles and rats. The failure of 4-iodopropofol to induce anesthesia in rodents after intraperitoneal injection is attributed to a pharmacokinetic difference from propofol rather than to major pharmacodynamic differences.


2020 ◽  
Vol 133 (3) ◽  
pp. 583-594 ◽  
Author(s):  
Megan McGrath ◽  
Helen Hoyt ◽  
Andrea Pence ◽  
Selwyn S. Jayakar ◽  
Xiaojuan Zhou ◽  
...  

Background Recent cryo-electron microscopic imaging studies have shown that in addition to binding to the classical extracellular benzodiazepine binding site of the α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor, diazepam also binds to etomidate binding sites located in the transmembrane receptor domain. Because such binding is characterized by low modulatory efficacy, the authors hypothesized that diazepam would act in vitro and in vivo as a competitive etomidate antagonist. Methods The concentration-dependent actions of diazepam on 20 µM etomidate-activated and 6 µM GABA-activated currents were defined (in the absence and presence of flumazenil) in oocyte-expressed α1β3γ2L GABAA receptors using voltage clamp electrophysiology. The ability of diazepam to inhibit receptor labeling of purified α1β3γ2L GABAA receptors by 3[H]azietomidate was assessed in photoaffinity labeling protection studies. The impact of diazepam (in the absence and presence of flumazenil) on the anesthetic potencies of etomidate and ketamine was compared in a zebrafish model. Results At nanomolar concentrations, diazepam comparably potentiated etomidate-activated and GABA-activated GABAA receptor peak current amplitudes in a flumazenil-reversible manner. The half-maximal potentiating concentrations were 39 nM (95% CI, 27 to 55 nM) and 26 nM (95% CI, 16 to 41 nM), respectively. However, at micromolar concentrations, diazepam reduced etomidate-activated, but not GABA-activated, GABAA receptor peak current amplitudes in a concentration-dependent manner with a half-maximal inhibitory concentration of 9.6 µM (95% CI, 7.6 to 12 µM). Diazepam (12.5 to 50 µM) also right-shifted the etomidate-concentration response curve for direct activation without reducing the maximal response and inhibited receptor photoaffinity labeling by 3[H]azietomidate. When administered with flumazenil, 50 µM diazepam shifted the etomidate (but not the ketamine) concentration–response curve for anesthesia rightward, increasing the etomidate EC50 by 18-fold. Conclusions At micromolar concentrations and in the presence of flumazenil to inhibit allosteric modulation via the classical benzodiazepine binding site of the GABAA receptor, diazepam acts as an in vitro and in vivo competitive etomidate antagonist. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2009 ◽  
Vol 102 (6) ◽  
pp. 3234-3250 ◽  
Author(s):  
Vladislav Volman ◽  
Herbert Levine ◽  
Eshel Ben-Jacob ◽  
Terrence J. Sejnowski

The high degree of variability observed in spike trains and membrane potentials of pyramidal neurons in vivo is thought to be a consequence of a balance between excitatory and inhibitory inputs, which depends on the dynamics of the network. We simulated synaptic currents and ion channels in a reconstructed hippocampal CA1 pyramidal cell and show here that a local balance can be achieved on a dendritic branch with a different mechanism, based on presynaptic depression of quantal release interacting with active dendritic conductances. This mechanism, which does not require synaptic inhibition, allows each dendritic branch to remain sensitive to correlated synaptic inputs, induces a high degree of variability in the output spike train, and can be combined with other balance mechanisms based on network dynamics. This hypothesis makes a testable prediction for the cause of the observed variability in the firing of hippocampal place cells.


2019 ◽  
Vol 16 (7) ◽  
pp. 637-644 ◽  
Author(s):  
Hadas Han ◽  
Sara Eyal ◽  
Emma Portnoy ◽  
Aniv Mann ◽  
Miriam Shmuel ◽  
...  

Background: Inflammation is a hallmark of epileptogenic brain tissue. Previously, we have shown that inflammation in epilepsy can be delineated using systemically-injected fluorescent and magnetite- laden nanoparticles. Suggested mechanisms included distribution of free nanoparticles across a compromised blood-brain barrier or their transfer by monocytes that infiltrate the epileptic brain. Objective: In the current study, we evaluated monocytes as vehicles that deliver nanoparticles into the epileptic brain. We also assessed the effect of epilepsy on the systemic distribution of nanoparticleloaded monocytes. Methods: The in vitro uptake of 300-nm nanoparticles labeled with magnetite and BODIPY (for optical imaging) was evaluated using rat monocytes and fluorescence detection. For in vivo studies we used the rat lithium-pilocarpine model of temporal lobe epilepsy. In vivo nanoparticle distribution was evaluated using immunohistochemistry. Results: 89% of nanoparticle loading into rat monocytes was accomplished within 8 hours, enabling overnight nanoparticle loading ex vivo. The dose-normalized distribution of nanoparticle-loaded monocytes into the hippocampal CA1 and dentate gyrus of rats with spontaneous seizures was 176-fold and 380-fold higher compared to the free nanoparticles (p<0.05). Seizures were associated with greater nanoparticle accumulation within the liver and the spleen (p<0.05). Conclusion: Nanoparticle-loaded monocytes are attracted to epileptogenic brain tissue and may be used for labeling or targeting it, while significantly reducing the systemic dose of potentially toxic compounds. The effect of seizures on monocyte biodistribution should be further explored to better understand the systemic effects of epilepsy.


2019 ◽  
Vol 19 (1) ◽  
pp. 31-45
Author(s):  
Meena K. Yadav ◽  
Laxmi Tripathi

Background: N-{[3-(4-chlorophenyl)-4-oxo-3, 4-dihydroquinazolin-2-yl] methyl}, 2-[(2- isopropyl-5-methyl) 1-cyclohexylidene] hydrazinecarboxamide QS11 was designed by computational study. It possessed essential pharmacophoric features for anticonvulsant activity and showed good docking with iGluRs (Kainate) glutamate receptor. Methods: QSAR and ADMET screening results suggested that QS11 would possess good potency for anticonvulsant activity. QS11 was synthesised and evaluated for its anticonvulsant activity and neurotoxicity. QS11 showed protection in strychnine, thiosemicarbazide, 4-aminopyridine and scPTZ induced seizure models and MES seizure model. QS11 showed higher ED50, TD50 and PI values as compared to the standard drugs in both MES and scPTZ screen. A high safety profile (HD50/ED50 values) was noted and hypnosis, analgesia, and anaesthesia were only observed at higher doses. No considerable increase or decrease in the concentration of liver enzymes was observed. Optimized QS11 was subjected to preclinical (in-vivo) studies and the pharmacokinetic performance of the sample was investigated. The result revealed that the pharmacokinetic performance of QS11 achieved maximum plasma concentrations (Cmax) of 0.315 ± 0.011 µg/mL at Tmax of 2.0 ± 0.13 h, area under the curve (AUC0-∞) value 4.591 ± 0.163 µg/ml x h, elimination half-life (T1/2) 6.28 ± 0.71 h and elimination rate constant was found 0.110 ± 0.013 h-1. Results and Conclusion: Above evidences indicate that QS11 could serve as a lead for development of new antiepileptic drugs.


Sign in / Sign up

Export Citation Format

Share Document