In vitro and in vivo GABAA Receptor Interaction of the Propanidid Metabolite 4-(2-[Diethylamino]-2-Oxoethoxy)-3-Methoxy-Benzeneacetic Acid

Pharmacology ◽  
2018 ◽  
Vol 103 (1-2) ◽  
pp. 10-16 ◽  
Author(s):  
Alessia Cenani ◽  
Robert J. Brosnan ◽  
Heather K. Knych

Background: Propanidid is a γ-aminobutyric acid type A (GABAA) receptor agonist general anesthetic and its primary metabolite is 4-(2-[diethylamino]-2-oxoethoxy)-3-methoxy-benzeneacetic acid (DOMBA). Despite having a high water solubility at physiologic pH that might predict low-affinity GABAA receptor interactions, DOMBA is reported to have no effect on GABAA receptor currents, possibly because the DOMBA concentrations studied were simply insufficient to modulate GABAA receptors. Our objectives were to measure the propanidid and DOMBA concentration responses on ­GABAA receptors and to measure the behavioral responses of DOMBA in mice at concentrations that affect GABAA receptor currents in vitro. Methods: GABAA receptors were expressed in oocytes using clones for the human GABAA α1, β2 and γ2s subunits. The effects of DOMBA (0.2–10 mmol/L) and propanidid (0.001–1 mmol/L) on oocyte GABAA currents were studied using standard 2-electrode voltage clamp techniques. Based on in vitro results, 6 mice received ­DOMBA 32 mg intraperitoneal and were observed for occurrence of neurologic effects and DOMBA plasma concentration was measured by liquid chromatography tandem mass spectrometry. Results: DOMBA both directly activates GABAA receptors and antagonizes its GABA-mediated opening in a concentration-dependent manner at concentrations between 5–10 and 0.5–10 mmol/L respectively. In vivo, DOMBA produced rapid onset sedation at plasma concentrations that correlate with direct GABAA receptor activation. Conclusion: DOMBA modulation of GABAA receptors is associated with sedation in mice. Metabolites of propanidid analogues currently in development may similarly modulate GABAA, and impaired elimination of these metabolites could produce clinically relevant neurophysiologic effects.

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi43-vi43
Author(s):  
Hamid Suhail ◽  
Rattan Ramandeep ◽  
Giri Shailendra ◽  
Ana deCarvalho ◽  
Steven Kalkanis ◽  
...  

Abstract Glioblastoma (GBM) is a highly glycolytic aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. AMPK has been reported as tumor suppressor and reprograms the cellular metabolic pathways and produces a metabolic checkpoint on the cell cycle though mTORC1, p53 and other modulators involved in cell proliferation, growth, survival and autophagy. The AMPK activity is diminished in gastric, breast and ovarian tumor cells by activated PI3K-AKT pathways. Cancer cells are able to reprogram their energy metabolism to compensate their high bioenergetic demands needed for their aggressive growth and survival. Curcumin exhibits pleiotropic properties and activate MAPK and leads to suppress p53, Wnt/β-catenin, SHH and PI3K-AKT signaling pathways. Curcumin or diferuloylmethane is a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa). The absorption, biodistribution, metabolism, and elimination studies of curcumin have, unfortunately, shown only poor absorption, rapid metabolism, and elimination of curcumin as major reasons for poor bioavailability of this interesting polyphenolic compound. We have engineered a curcumin-based nanoparticle (Curc-NP) which demonstrates high water solubility. Curc-NP was effectively transported into the cells by nanoparticles through endocytosis and localized around the nuclei in the cytoplasms. In vitro studies proved that the cytotoxicity of Curc-NP is more effective against U-251 cell line in a dose-dependent manner. Systemic delivery of Curc-NP led to preferentially accumulation in an orthotopic preclinical glioma model minimizing systemic toxic effect. Multicolor microscopy images of the tumor tissue showed that Curc-NP particles were internalized inside tumor cells selectively and localized within nuclei. Curc-NP demonstrated to restore the dysregulated AMPK activity in glioma cells. Curc-NP-induced AMPK activation resulted in inhibition of oncogenic signalling pathways in glioma. Curc-NP-induced metabolic reprograming in glioma cells will be examined and the in vivo therapeutic efficacy of Curc-NP in an experimental rat model of GBM will also be evaluated.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6298
Author(s):  
Rami Lee ◽  
Sun-Hye Choi ◽  
Han-Sung Cho ◽  
Hongik Hwang ◽  
Hyewhon Rhim ◽  
...  

Ginseng-derived gintonin reportedly contains functional lysophosphatidic acids (LPAs) as LPA receptor ligands. The effect of the gintonin-enriched fraction (GEF) on in vitro and in vivo glucagon-like protein-1 (GLP-1) secretion, which is known to stimulate insulin secretion, via LPA receptor(s) remains unclear. Accordingly, we examined the effects of GEF on GLP-1 secretion using human enteroendocrine NCI-H716 cells. The expression of several of LPA receptor subtypes in NCI-H716 cells using qPCR and Western blotting was examined. LPA receptor subtype expression was in the following order: LPA6 > LPA2 > LPA4 > LPA5 > LPA1 (qPCR), and LPA6 > LPA4 > LPA2 > LPA1 > LPA3 > LPA5 (Western blotting). GEF-stimulated GLP-1 secretion occurred in a dose- and time-dependent manner, which was suppressed by cAMP-Rp, a cAMP antagonist, but not by U73122, a phospholipase C inhibitor. Furthermore, silencing the human LPA6 receptor attenuated GEF-mediated GLP-1 secretion. In mice, low-dose GEF (50 mg/kg, peroral) increased serum GLP-1 levels; this effect was not blocked by Ki16425 co-treatment. Our findings indicate that GEF-induced GLP-1 secretion could be achieved via LPA6 receptor activation through the cAMP pathway. Hence, GEF-induced GLP secretion via LPA6 receptor regulation might be responsible for its beneficial effects on human endocrine physiology.


2002 ◽  
Vol 22 (6) ◽  
pp. 1626-1638 ◽  
Author(s):  
Michael D. Ruse ◽  
Martin L. Privalsky ◽  
Frances M. Sladek

ABSTRACT For most ligand-dependent nuclear receptors, the status of endogenous ligand modulates the relative affinities for corepressor and coactivator complexes. It is less clear what parameters modulate the switch between corepressor and coactivator for the orphan receptors. Our previous work demonstrated that hepatocyte nuclear factor 4α1 (HNF4α1, NR2A1) interacts with the p160 coactivator GRIP1 and the cointegrators CBP and p300 in the absence of exogenously added ligand and that removal of the F domain enhances these interactions. Here, we utilized transient-transfection analysis to demonstrate repression of HNF4α1 activity by the corepressor silencing mediator of retinoid and thyroid receptors (SMRT) in several cell lines and on several HNF4α-responsive promoter elements. Glutathione S-transferase pulldown assays confirmed a direct interaction between HNF4α1 and receptor interaction domain 2 of SMRT. Loss of the F domain resulted in marked reduction of the ability of SMRT to interact with HNF4α1 in vitro and repress HNF4α1 activity in vivo, although the isolated F domain itself failed to interact with SMRT. Surprisingly, loss of both the A/B and F domains restored full repression by SMRT, suggesting involvement of both domains in the SMRT interaction. Finally, we show that when coexpressed along with HNF4α1 and GRIP1, CBP, or p300, SMRT can titer out HNF4α1-mediated transactivation in a dose-dependent manner and that this competition derives from mutually exclusive binding. Collectively, these results suggest that HNF4α can functionally interact with both a coactivator and a corepressor without altering the status of any putative ligand and that the presence of the F domain may play a role in discriminating between the different coregulators.


2000 ◽  
Vol 18 (1) ◽  
pp. 178-178 ◽  
Author(s):  
Eric K. Rowinsky ◽  
Rachel Humphrey ◽  
Lisa A. Hammond ◽  
Cheryl Aylesworth ◽  
Leslie Smetzer ◽  
...  

PURPOSE: To evaluate the feasibility of administering BAY 12-9566, a matrix metalloproteinase (MMP) inhibitor with relative specificity against MMP-2, MMP-3, and MMP-9, on a protracted oral daily dosing schedule in patients with advanced solid malignancies. The study also sought to determine the principal toxicities of BAY 12-9566, whether plasma BAY 12-9566 steady state concentrations (Css) of biologic relevance could be sustained for prolonged periods, and whether BAY 12-9566 affected plasma concentrations of MMP-2, MMP-9, and tissue inhibitor of MMP-2 (TIMP-2). PATIENTS AND METHODS: Patients with solid malignancies were treated with BAY 12-9566 at daily oral doses ranging from 100 to 1,600 mg. BAY 12-9566 dose schedules included 100 mg once daily, 400 mg once daily, 400 mg twice daily, 400 mg three times daily, 400 mg four times daily, and 800 mg twice daily. Plasma was collected to study the range of BAY 12-9566 Css values achieved, and exploratory studies were performed to assess the effects of BAY 12-9566 on plasma concentrations of MMP-2, MMP-9, and TIMP-2. RESULTS: Twenty-one patients were treated with 47 28-day courses of BAY 12-9566. The most common side effects were headache, nausea, vomiting, abnormalities in hepatic functions, and thrombocytopenia, which were rarely clinically significant. BAY 12-9566 was well tolerated on all dose schedules, and there was no consistent dose-limiting toxicity that precluded treatment in the range of dose schedules evaluated. Instead, dose escalation was terminated because BAY 12-9566 plasma Css values increased less than proportionately and plateaued as the daily dose was increased within the dose range of 100 to 1,600 mg/d, suggesting saturable drug absorption. Mean plasma Css values achieved with all dose schedules exceeded BAY 12-9566 concentrations required to inhibit MMPs in vitro and in vascular invasion and tumor proliferation in vivo models. There were no consistent effects of BAY 12-9566 on the plasma concentrations of MMP-2 and MMP-9 over the continuous dosing period at any dose schedule level. However, plasma levels of TIMP-2 seemed to increase in a dose-dependent manner (r2 = .50, P = .046). CONCLUSIONS: The recommended dose of BAY 12-9566 for subsequent disease directed studies is 800 mg twice daily, which resulted in biologically relevant plasma Css values and an acceptable toxicity profile. Although exploratory studies of MMPs in plasma were not revealing, it is conceivable that some tumor types and disease settings are more likely to produce more readily quantifiable levels of activated MMPs than others. Therefore, attempts to identify and quantify surrogate markers of MMP inhibitory effects should continue to be performed in disease-directed studies in more homogenous patient populations.


Endocrinology ◽  
2001 ◽  
Vol 142 (11) ◽  
pp. 4839-4851 ◽  
Author(s):  
Silvia M. Kreda ◽  
Martina Sumner ◽  
Silvia Fillo ◽  
Carla M. Ribeiro ◽  
Guo X. Luo ◽  
...  

Abstract Norepinephrine has long been known to stimulate the pulsatile and preovulatory release of LH-releasing hormone (LHRH). In vivo and in vitro studies indicate that these effects are mediated primarily through α1-adrenergic receptors (α1-ARs). With the immortalized hypothalamic LHRH neurons, we have found that α1-adrenergic agents directly stimulate the secretion of LHRH in a dose-dependent manner. Ligand binding and RNA studies demonstrate that the GT1 cells contain both α1A- and α1B-ARs. Competition binding experiments show that approximately 75% of the binding is due toα 1B-ARs; the remainder is made up ofα 1A-ARs. Receptor activation leads to stimulation of PLC. PLCβ1 and PLCβ3 are expressed in GT1 neurons, and these PLCs are probably responsible for the release of diacylglycerol and IP as well as the increase in intracellular calcium. The mobilization of cytoplasmic calcium is sufficient to stimulate cytosolic PLA2 (cPLA2) and release arachidonic acid. A dissection of the contributions of the phospholipases to LHRH secretion suggests that cPLA2 acts downstream of PLC and that it significantly augments the PLC-stimulated LHRH secretory response. Inasmuch as the α1-ARs are known to play a critical role in LHRH physiology, we propose that both PLC and cPLA2 are critical in regulating and amplifying LHRH release.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1029
Author(s):  
Che-Chuan Wang ◽  
Pei-Wen Hsieh ◽  
Jinn-Rung Kuo ◽  
Su-Jane Wang

Rosmarinic acid, a major component of rosemary, is a polyphenolic compound with potential neuroprotective effects. Asreducing the synaptic release of glutamate is crucial to achieving neuroprotectant’s pharmacotherapeutic effects, the effect of rosmarinic acid on glutamate release was investigated in rat cerebrocortical nerve terminals (synaptosomes). Rosmarinic acid depressed the 4-aminopyridine (4-AP)-induced glutamate release in a concentration-dependent manner. The removal of extracellular calcium and the blockade of vesicular transporters prevented the inhibition of glutamate release by rosmarinic acid. Rosmarinic acid reduced 4-AP-induced intrasynaptosomal Ca2+ elevation. The inhibition of N-, P/Q-type Ca2+ channels and the calcium/calmodulin-dependent kinase II (CaMKII) prevented rosmarinic acid from having effects on glutamate release. Rosmarinic acid also reduced the 4-AP-induced activation of CaMKII and the subsequent phosphorylation of synapsin I, the main presynaptic target of CaMKII. In addition, immunocytochemistry confirmed the presence of GABAA receptors. GABAA receptor agonist and antagonist blocked the inhibitory effect of rosmarinic acid on 4-AP-evoked glutamate release. Docking data also revealed that rosmarinic acid formed a hydrogen bond with the amino acid residues of GABAA receptor. These results suggested that rosmarinic acid activates GABAA receptors in cerebrocortical synaptosomes to decrease Ca2+ influx and CaMKII/synapsin I pathway to inhibit the evoked glutamate release.


Author(s):  
Jing Lin ◽  
Xiao-Jun Wu ◽  
Wen-Xin Wei ◽  
Xing-Chun Gao ◽  
Ming-Zhu Jin ◽  
...  

AbstractProlyl-4-hydroxylase subunit 2 (P4HA2), as a member of collagen modification enzymes, is induced under hypoxic conditions with essential roles in the collagen maturation, deposition as well as the remodeling of extracellular matrix(ECM). Mounting evidence has suggested that deregulation of P4HA2 is common in cancer. However, the expression pattern and molecular mechanisms of P4HA2 in glioma remain unknown. Here, we demonstrate that P4HA2 is overexpressed in glioma and inversely correlates with patient survival. Knockdown of P4HA2 inhibits proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT)-like phenotype of glioma cells in vitro and suppressed tumor xenograft growth in vivo. Mechanistically, bioinformatics analysis shows that ECM-receptor interaction and PI3K/AKT pathway are the most enriched pathways of the co-expressed genes with P4HA2. Furthermore, P4HA2 mRNA was positively correlated with mRNA expressions of a series of collagen genes, but not mRNA of PI3K or AKT1/2. Conversely, both the protein expressions of collagens and phosphorylated PI3K/AKT could be downregulated either by silencing of P4HA2 expression or inhibition of its prolyl hydroxylase. Moreover, the inhibitory effects on the migration, invasion and the EMT-related molecules by P4HA2 knockdown can be recapitulated by the Akt phosphorylation activator. Taken together, our findings for the first time reveal an oncogenic role of P4HA2 in the glioma malignancy. By regulating the expression of fibrillar collagens and the downstream PI3K/AKT signaling pathway, it may serve as a potential anti-cancer target for the treatment of glioma.HighlightsP4HA2 is overexpressed and correlated with poor prognosis in glioma.P4HA2 depletion inhibits glioma proliferation, migration, invasion and EMT-like phenotype in vitro and tumorigenesis in vivo.P4HA2 depletion attenuates the PI3K/AKT signaling pathway in a collagen-dependent manner.


2020 ◽  
Vol 133 (3) ◽  
pp. 583-594 ◽  
Author(s):  
Megan McGrath ◽  
Helen Hoyt ◽  
Andrea Pence ◽  
Selwyn S. Jayakar ◽  
Xiaojuan Zhou ◽  
...  

Background Recent cryo-electron microscopic imaging studies have shown that in addition to binding to the classical extracellular benzodiazepine binding site of the α1β3γ2L γ-aminobutyric acid type A (GABAA) receptor, diazepam also binds to etomidate binding sites located in the transmembrane receptor domain. Because such binding is characterized by low modulatory efficacy, the authors hypothesized that diazepam would act in vitro and in vivo as a competitive etomidate antagonist. Methods The concentration-dependent actions of diazepam on 20 µM etomidate-activated and 6 µM GABA-activated currents were defined (in the absence and presence of flumazenil) in oocyte-expressed α1β3γ2L GABAA receptors using voltage clamp electrophysiology. The ability of diazepam to inhibit receptor labeling of purified α1β3γ2L GABAA receptors by 3[H]azietomidate was assessed in photoaffinity labeling protection studies. The impact of diazepam (in the absence and presence of flumazenil) on the anesthetic potencies of etomidate and ketamine was compared in a zebrafish model. Results At nanomolar concentrations, diazepam comparably potentiated etomidate-activated and GABA-activated GABAA receptor peak current amplitudes in a flumazenil-reversible manner. The half-maximal potentiating concentrations were 39 nM (95% CI, 27 to 55 nM) and 26 nM (95% CI, 16 to 41 nM), respectively. However, at micromolar concentrations, diazepam reduced etomidate-activated, but not GABA-activated, GABAA receptor peak current amplitudes in a concentration-dependent manner with a half-maximal inhibitory concentration of 9.6 µM (95% CI, 7.6 to 12 µM). Diazepam (12.5 to 50 µM) also right-shifted the etomidate-concentration response curve for direct activation without reducing the maximal response and inhibited receptor photoaffinity labeling by 3[H]azietomidate. When administered with flumazenil, 50 µM diazepam shifted the etomidate (but not the ketamine) concentration–response curve for anesthesia rightward, increasing the etomidate EC50 by 18-fold. Conclusions At micromolar concentrations and in the presence of flumazenil to inhibit allosteric modulation via the classical benzodiazepine binding site of the GABAA receptor, diazepam acts as an in vitro and in vivo competitive etomidate antagonist. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


1999 ◽  
Vol 19 (9) ◽  
pp. 5952-5959 ◽  
Author(s):  
Annika E. Wallberg ◽  
Kristen E. Neely ◽  
Jan-Åke Gustafsson ◽  
Jerry L. Workman ◽  
Anthony P. H. Wright ◽  
...  

ABSTRACT Previous studies have shown that the Ada adapter proteins are important for glucocorticoid receptor (GR)-mediated gene activation in yeast. The N-terminal transactivation domain of GR, τ1, is dependent upon Ada2, Ada3, and Gcn5 for transactivation in vitro and in vivo. Using in vitro techniques, we demonstrate that the GR-τ1 interacts directly with the native Ada containing histone acetyltransferase (HAT) complex SAGA but not the related Ada complex. Mutations in τ1 that reduce τ1 transactivation activity in vivo lead to a reduced binding of τ1 to the SAGA complex and conversely, mutations increasing the transactivation activity of τ1 lead to an increased binding of τ1 to SAGA. In addition, the Ada-independent NuA4 HAT complex also interacts with τ1. GAL4-τ1-driven transcription from chromatin templates is stimulated by SAGA and NuA4 in an acetyl coenzyme A-dependent manner. Low-activity τ1 mutants reduce SAGA- and NuA4-stimulated transcription while high-activity τ1 mutants increase transcriptional activation, specifically from chromatin templates. Our results demonstrate that the targeting of native HAT complexes by the GR-τ1 activation domain mediates transcriptional stimulation from chromatin templates.


1987 ◽  
Vol 58 (03) ◽  
pp. 921-926 ◽  
Author(s):  
E Seifried ◽  
P Tanswell

SummaryIn vitro, concentration-dependent effects of rt-PA on a range of coagulation and fibrinolytic assays in thawed plasma samples were investigated. In absence of a fibrinolytic inhibitor, 2 μg rt-PA/ml blood (3.4 μg/ml plasma) caused prolongation of clotting time assays and decreases of plasminogen (to 44% of the control value), fibrinogen (to 27%), α2-antiplasmin (to 5%), FV (to 67%), FVIII (to 41%) and FXIII (to 16%).Of three inhibitors tested, a specific polyclonal anti-rt-PA antibody prevented interferences in all fibrinolytic and most clotting assays. D-Phe-Pro-Arg-CH2Cl (PPACK) enabled correct assays of fibrinogen and fibrinolytic parameters but interfered with coagulometric assays dependent on endogenous thrombin generation. Aprotinin was suitable only for a restricted range of both assay types.Most in vitro effects were observed only with rt-PA plasma concentrations in excess of therapeutic values. Nevertheless it is concluded that for clinical application, collection of blood samples on either specific antibody or PPACK is essential for a correct assessment of in vivo effects of rt-PA on the haemostatic system in patients undergoing fibrinolytic therapy.


Sign in / Sign up

Export Citation Format

Share Document