Expanded CTG repeats in myotonin protein kinase increase susceptibility to oxidative stress

Neuroreport ◽  
1998 ◽  
Vol 9 (10) ◽  
pp. 2291-2296 ◽  
Author(s):  
Fusako Usuki ◽  
Shoichi Ishiura
1998 ◽  
Vol 3 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Kathryn Z Guyton ◽  
Myriani Gorospe ◽  
Xiantao Wang ◽  
Yolanda D Mock ◽  
Gertrude C Kokkonen ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 897
Author(s):  
Wen-Ping Jiang ◽  
Jeng-Shyan Deng ◽  
Shyh-Shyun Huang ◽  
Sheng-Hua Wu ◽  
Chin-Chu Chen ◽  
...  

Liver damage induced by paracetamol overdose is the main cause of acute liver failure worldwide. In order to study the hepatoprotective effect of Sanghuangporus sanghuang mycelium (SS) on paracetamol-induced liver injury, SS was administered orally every day for 6 days in mice before paracetamol treatment. SS decreased serum aminotransferase activities and the lipid profiles, protecting against paracetamol hepatotoxicity in mice. Furthermore, SS inhibited the lipid peroxidation marker malondialdehyde (MDA), hepatic cytochrome P450 2E1 (CYP2E1), and the histopathological changes in the liver and decreased inflammatory activity by inhibiting the production of proinflammatory cytokines in paracetamol-induced acute liver failure. Moreover, SS improved the levels of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase in the liver. Significantly, SS diminished mitogen-activated protein kinase (MAPK), Toll-like receptor 4 (TLR4), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the nuclear factor-kappa B (NF-κB) axis, as well as upregulated the Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, in paracetamol-induced mice. SS mainly inhibited the phosphorylation of the liver kinase B1 (LKB1), Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ), and AMP-activated protein kinase (AMPK) protein expression. Furthermore, the protective effects of SS on paracetamol-induced hepatotoxicity were abolished by compound C, an AMPK inhibitor. In summary, we provide novel molecular evidence that SS protects liver cells from paracetamol-induced hepatotoxicity by inhibiting oxidative stress and inflammation.


2010 ◽  
Vol 88 (3) ◽  
pp. 220-232 ◽  
Author(s):  
Natalia Ziolkowski ◽  
Ashok K. Grover

The α-adrenergic receptors (adrenoceptors) are activated by the endogenous agonists epinephrine and norepinephrine. They are G protein-coupled receptors that may be broadly classified into α1 (subclasses α1A, α1B, α1D) and α2 (subclasses α2A, α2B, α2C). The α1-adrenoceptors act by binding to Gαq subunits of the G proteins, causing activation of phospholipase C (PLC). PLC converts phosphatidylinositol 4,5-bisphosphate into inositol trisphosphate (IP3) and diacylglycerol (DAG), which have downstream effects on cytosolic Ca2+ concentration. The α2-adrenoceptors bind to Gαi thus inhibiting adenylyl cyclase and decreasing cAMP levels. DAG alters protein kinase C activity and cAMP activates protein kinase A. The downstream pathways of the two receptors may also interact. Activation of α1- and α2-adrenoceptors in vascular smooth muscle results in vasoconstriction. However, the densities of individual receptor subclasses vary between vessel beds or between vessels of various sizes within the same bed. In vasculature, the densities of adrenoceptor subclasses differ between conduit arteries and arterioles. These differences, along with differences in coupling mechanisms, allow for fine regulation of arterial blood flow. This diversity is enhanced by interactions resulting from homo- and heterodimer formation of the receptors, metabolic pathways, and kinases. Reactive oxygen species generated in pathologies may alter α1- and α2-adrenoceptor cascades, change vascular contractility, or cause remodeling of blood vessels. This review emphasizes the need for understanding the functional linkage between α-adrenoceptor subtypes, coupling, cross talk, and oxidative stress in cardiovascular pathologies.


2003 ◽  
Vol 35 (6) ◽  
pp. 683-694 ◽  
Author(s):  
Flavia Pricci ◽  
Gaetano Leto ◽  
Lorena Amadio ◽  
Carla Iacobini ◽  
Samantha Cordone ◽  
...  

1996 ◽  
Vol 6 (2) ◽  
pp. 142-154 ◽  
Author(s):  
R Deka ◽  
P P Majumder ◽  
M D Shriver ◽  
D N Stivers ◽  
Y Zhong ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hideyuki Sasaki ◽  
Hiroshi Asanuma ◽  
Masashi Fujita ◽  
Hiroyuki Takahama ◽  
Masanori Asakura ◽  
...  

Background; Several studies have shown that metformin activates AMP-activated protein kinase (AMPK), which mediates potent cardioprotection against ischemia-reperfusion injury. AMPK is also activated in experimental failing myocardium, suggesting that activation of AMPK is beneficial for the pathophysiology of heart failure. We investigated whether metformin prevents oxidative stress-induced cell death in rat cardiomyocytes and attenuates the progression of heart failure in dogs. Methods and Results; The treatment with metformin (10 μmol/L) protected the rat cultured cardiomyocytes against cell death due to H 2 O 2 exposure (50 μmol/L) as indicated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), TUNEL staining, and flow cytometry. These effects were blunted by an AMPK inhibitor, compound-C (20 μmol/L), suggesting that the activation of AMPK decreased the extent of apoptosis-induced cell death due to H 2 O 2 exposure. Continuous rapid ventricular pacing (230/min for 4 weeks) in dogs caused heart failure and the treatment with metformin (100 mg/kg/day PO, n=8) decreased left ventricular (LV) end-diastolic dimension (32.8±0.4 vs. 36.5±1.0 mm, p< 0.01) and pressure (11.8±1.1 vs. 22±0.9 mmHg, p< 0.01), and increased LV fractional shortening (18.6±1.8 vs. 9.6±0.7 %, p< 0.01) along with enhanced phosphorylation of AMPK and the decreased the number of TUNEL-positive cells of the LV myocardium compared with the vehicle group (n=8). Interestingly, metformin increased the protein and mRNA levels of endothelial nitric oxide synthase of the LV myocardium and plasma nitric oxide levels. Metformin improved the plasma insulin resistance without increased myocardial GLUT-4 translocation. Furthermore, the subcutaneous administration of AICAR (50 mg/kg/every other day), another AMPK activator mediated the equivalent effects to metformin, strengthening the pivotal role of AMPK in reduction of apoptosis and prevention of heart failure. Conclusions; Activation of myocardial AMPK attenuated the oxidative stress-induced cardiomyocyte apoptosis and prevented the progression of heart failure in dogs, along with eNOS activation. Thus, metformin or AICAR may be applicable as a novel therapy for heart failure.


Sign in / Sign up

Export Citation Format

Share Document