THE IMPACT OF DIFFERENT TYPES OF CIRCADIAN RHYTHM OF BLOOD PRESSURE AND NOCTURNAL LEVEL OF THAT PRESSURE IN RELATION TO THE STAGE OF OPTIC NERVE NEUROPATHY AND ON THE CHARACTERISTICS OF BLOOD FLOW IN SELECTED ARTERIES OF THE EYEBALL AND ORBIT OF PATI

2011 ◽  
Vol 29 ◽  
pp. e254
Author(s):  
B. Krasinska ◽  
M. Karolczak-Kulesza ◽  
Z. Krasinski ◽  
K. Pawlaczyk-Gabriel ◽  
A. Niklas ◽  
...  
2018 ◽  
Vol 59 (8) ◽  
pp. 3488 ◽  
Author(s):  
Naoki Kiyota ◽  
Yukihiro Shiga ◽  
Kohei Ichinohasama ◽  
Masayuki Yasuda ◽  
Naoko Aizawa ◽  
...  

Author(s):  
Hayder Sabah Hasan ◽  
Imad Hashim ◽  
Zaid Al-Attar

Objective: To assess the antihypertensive efficacy of the medicinal plants used Hibiscus subdariffa, Plantago major, Teucrium polium. Moreover, we aim to Investigate the mechanisms of actions of tested agents. Design: Induced hypertension in experimental animals is tested against several drugs and medicinal plants extracts. Animals and materials: Hypertension was induced in experimental rabbits with phenylephrine 0.2mg/kg i.v. with increasing the dose (until Blood pressure>130/90mmHg). Rabbits were divided to 7 groups: Control, atenolol, furosemide, candesartan, Hibiscus subdariffa, Plantago major, Teucrium polium. ANOVA with Dunnett's test was implemented for statistical calculations with p<0.05 as significance level. Results: Candesartan was the most effective in lowering both systolic and diastolic blood pressure. Concerning the blood flow, candesartan was found to be the most significantly effective drug in increasing blood flow followed by furosemide and Hibiscus subdariffa respectively. Concerning the urine output furosemide was found to be the most significantly effective drug in increasing urine output followed by Hibiscus subdariffa. The aqueous extracts of Plantago major and Teucrium polium showed no significant effect. Conclusions: Hibiscus subdariffa is effective as diuretic agent at the concentration mentioned. Its action involves diuretic and vasodilator effect. While aqueous extracts of Plantago major and Teucrium polium are not effective.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Xueling Li ◽  
Ling Ruan ◽  
Austin Bentley ◽  
Stephen Haigh ◽  
Yuqing Huo ◽  
...  

Atherosclerosis is a leading cause of death despite the improvements in lipid and blood pressure control. The circadian clock, a molecular network of genes and proteins that controls 24-hour timing, has emerged to have a surprising role in the control of metabolic and vascular function. Herein we examined the impact of circadian rhythm dysfunction in atherogenesis by implementation of vascular transplant and PCSK9 based approaches to induce accelerated lesion development in mice. We find that atherogenesis is exacerbated in Bmal1-KO aortic grafts immersed in the hypercholesterolemic milieu of ApoE -/- mice. To assess if atherosclerosis was ‘circadian rhythm dependent’ we subjected wild-type mice to a shortened light cycle (4L/4D) and induced atherosclerosis by intravenous injection of a human PCSK-9 adeno associated virus. Atherosclerosis in the jet-lagged PCSK-9 mice was robustly increased relative to the atherosclerosis observed in WT mice on a normal light cycle (12L/12D), providing further evidence that circadian rhythm and the circadian clock contribute to atherosclerosis. However, atherosclerosis is a complex disease that is the net result of interplay between intrinsic (vascular cells) and extrinsic mechanisms (metabolism, blood pressure, and hormones) and the importance of clock function in individual cell types is poorly understood. We found that deletion or silencing of key circadian transcription factors resulted in an enhanced inflammatory and pro-oxidant phenotype with diminished NO production and greater lipid uptake in both macrophages and endothelial cells. Loss of circadian function in smooth muscle cells similarly resulted in enhanced production of reactive oxygen species and greater cell proliferation. Surprising, the silencing of Bmal2 in endothelial cells resulted in greater lipid uptake in oxLDL treated HAEC as well as increased expression of markers of autophagy, suggesting that Bmal2 may orchestrate numerous output functions in different cell types. In conclusion, we find that the circadian clock and circadian rhythm have a profound impact on atherosclerosis, to influence vascular cell inflammatory and lipid uptake responses, and identify an unexpectedly prominent role for the side-partner of Bmal1, Bmal2.


2020 ◽  
pp. 0271678X2096745
Author(s):  
Zhao Liming ◽  
Sun Weiliang ◽  
Jia Jia ◽  
Liang Hao ◽  
Liu Yang ◽  
...  

Our aim was to determine the impact of targeted blood pressure modifications on cerebral blood flow in ischemic moyamoya disease patients assessed by single-photon emission computed tomography (SPECT). From March to September 2018, we prospectively collected data of 154 moyamoya disease patients and selected 40 patients with ischemic moyamoya disease. All patients underwent in-hospital blood pressure monitoring to determine the mean arterial pressure baseline values. The study cohort was subdivided into two subgroups: (1) Group A or relative high blood pressure (RHBP) with an induced mean arterial pressure 10–20% higher than baseline and (2) Group B or relative low blood pressure (RLBP) including patients with mean arterial pressure 10–20% lower than baseline. All patients underwent initial SPECT study on admission-day, and on the following day, every subgroup underwent a second SPECT study under their respective targeted blood pressure values. In general, RHBP patients showed an increment in perfusion of 10.13% (SD 2.94%), whereas RLBP patients showed a reduction of perfusion of 12.19% (SD 2.68%). Cerebral blood flow of moyamoya disease patients is susceptible to small blood pressure changes, and cerebral autoregulation might be affected due to short dynamic blood pressure modifications.


2014 ◽  
Vol 11 (1) ◽  
pp. 11-16
Author(s):  
O D Ostroumova ◽  
O V Bondarets ◽  
T F Guseva

The article discusses the importance of different types of variability in blood pressure (BP) as an independent risk factor for stroke and myocardial infarction in patients with arterial hypertension. The results of the Russian observation program (1500 patients) on the impact of amlodipine show BP variability in real clinical practice. According to the results, amlodipine 5-10 mg after 2 weeks of treatment significantly reduces the variability of systolic and diastolic blood pressure in both sexes. His influence on the short-term variability in diastolic blood pressure is dose-dependent.


2011 ◽  
Vol 89 (s248) ◽  
pp. 0-0
Author(s):  
T LACHARME ◽  
M GEISER ◽  
A ALMANJOUMI ◽  
H KHAYI ◽  
N ARNOL ◽  
...  

Author(s):  
Savannah V. Wooten ◽  
Sten Stray-Gundersen ◽  
Hirofumi Tanaka

AbstractA combination of yoga and blood flow restriction, each of which elicits marked pressor responses, may further increase blood pressure and myocardial oxygen demand. To determine the impact of a combination of yoga and blood flow restriction on hemodynamic responses, twenty young healthy participants performed 20 yoga poses with/without blood flow restriction bands placed on both legs. At baseline, there were no significant differences in any of the variables between the blood flow restriction and non-blood flow restriction conditions. Blood pressure and heart rate increased in response to the various yoga poses (p<0.01) but were not different between the blood flow restriction and non-blood flow restriction conditions. Rate-pressure products, an index of myocardial oxygen demand, increased significantly during yoga exercises with no significant differences between the two conditions. Rating of perceived exertion was not different between the conditions. Blood lactate concentration was significantly greater after performing yoga with blood flow restriction bands (p=0.007). Cardio-ankle vascular index, an index of arterial stiffness, decreased similarly after yoga exercise in both conditions while flow-mediated dilation remained unchanged. In conclusion, the use of lower body blood flow restriction bands in combination with yoga did not result in additive or synergistic hemodynamic and pressor responses.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82351 ◽  
Author(s):  
Agnes Boltz ◽  
Reinhard Told ◽  
Katarzyna J. Napora ◽  
Stefan Palkovits ◽  
René M. Werkmeister ◽  
...  

2018 ◽  
Vol 124 (2) ◽  
pp. 321-329 ◽  
Author(s):  
Hisao Yoshida ◽  
Jason W. Hamner ◽  
Keita Ishibashi ◽  
Can Ozan Tan

Postural changes impair the ability of the cerebrovasculature to buffer against dynamic pressure fluctuations, but the mechanisms underlying this impairment have not been elucidated. We hypothesized that autoregulatory impairment may reflect the impact of static central volume shifts on hemodynamic factors other than arterial pressure (AP). In 14 young volunteers, we assessed the relation of fluctuations in cerebral blood flow (CBF) to those in AP, cardiac output, and CO2, during oscillatory lower body pressure (LBP) (±20 mmHg at 0.01 and 0.06 Hz) at three static levels (−20, 0, and +20 mmHg). Static and dynamic changes in AP, cardiac output, and CO2 explained over 70% of the variation in CBF fluctuations. However, their contributions were different across frequencies and levels: dynamic AP changes explained a substantial proportion of the variation in faster CBF fluctuations (partial R2 = 0.75, standardized β = 0.83, P < 0.01), whereas those in CO2 explained the largest portion of the variation in slow fluctuations (partial R2 = 0.43, β = 0.51, P < 0.01). There was, however, a major contribution of slow dynamic AP changes during negative (β = 0.43) but not neutral (β = 0.05) or positive (β = −0.07) LBP. This highlights the differences in contributions of systemic variables to dynamic and static autoregulation and has important implications for understanding orthostatic intolerance. NEW & NOTEWORTHY While fluctuations in blood pressure drive faster fluctuations in cerebral blood flow, overall level of CO2 and the magnitude of its fluctuations, along with cardiac output, determine the magnitude of slow ones. The effect of slow blood pressure fluctuations on cerebrovascular responses becomes apparent only during pronounced central volume shifts (such as when standing). This underlines distinct but interacting contributions of static and dynamic changes in systemic hemodynamic variables to the cerebrovascular regulation.


Sign in / Sign up

Export Citation Format

Share Document