TRANSFECTION EFFICIENCY AND IN VIVO NONHUMAN PRIMATE ISLET TOXICITY AFTER GENE TRANSFER USING A TRIPLE-DELETED ADENOVIRAL VECTOR.

2000 ◽  
Vol 69 (Supplement) ◽  
pp. S278
Author(s):  
J. L. Contreras ◽  
G. Bilbao ◽  
C. A. Smyth ◽  
D. E. Eckhoff ◽  
F. Thomas ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Liesl Jacobs ◽  
Elien De Smidt ◽  
Nick Geukens ◽  
Paul Declerck ◽  
Kevin Hollevoet

Abstract Intratumoral delivery of drug-encoding plasmid DNA (pDNA) enables localised in vivo expression of biological drugs, offering an attractive alternative to conventional protein treatment. However, this requires physical or chemical methods to enhance the low transfection efficiency of naked pDNA. Electroporation and complexation with the polycation in vivo-jetPEI are both evaluated in the clinic for intratumoral pDNA delivery, but lack head-to-head comparison. This study therefore compared both methods for intratumoral DNA-based reporter gene transfer in a subcutaneous mouse tumour model. Intratumoral electroporation resulted in strong reporter expression that was restricted to the tumour area and persisted for at least ten days. Intratumoral expression after injection of pDNA-jetPEI complexes was two to three logs lower, did not exceed the background in most mice, and lasted less than five days even with repeated dosing. Remarkably, reporter expression was primarily detected in the lungs, presumably due to leakage of pDNA-jetPEI complexes into the systemic circulation. In conclusion, electroporation enabled more efficient, prolonged and tumour-specific reporter expression compared to intratumoral injection of pDNA complexed with in vivo-jetPEI. These results favour the use of electroporation for intratumoral DNA-based gene transfer, and suggest further optimisation of pDNA-jetPEI complexes is needed to improve their efficacy and biosafety.


1993 ◽  
Vol 73 (5) ◽  
pp. 797-807 ◽  
Author(s):  
S W Lee ◽  
B C Trapnell ◽  
J J Rade ◽  
R Virmani ◽  
D A Dichek

Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2839-2848 ◽  
Author(s):  
Hitoshi Hibino ◽  
Kenzaburo Tani ◽  
Kenji Ikebuchi ◽  
Ming-Shiuan Wu ◽  
Hajime Sugiyama ◽  
...  

Nonhuman primate models are useful to evaluate the safety and efficacy of new therapeutic modalities, including gene therapy, before the inititation of clinical trials in humans. With the aim of establishing safe and effective approaches to therapeutic gene transfer, we have been focusing on a small New World monkey, the common marmoset, as a target preclinical model. This animal is relatively inexpensive and easy to breed in limited space. First, we characterized marmoset blood and bone marrow progenitor cells (BMPCs) and showed that human cytokines were effective to maintain and stimulate in culture. We then examined their susceptibility to transduction by retroviral vectors. In a mixed culture system containing both marmoset stromal cells and retroviral producer cells, the transduction efficiency into BMPCs and peripheral blood progenitor cells (PBPCs) was 12% to 24%. A series of marmosets then underwent transplantation with autologous PBPCs transduced with a retroviral vector carrying the multidrug resistance 1 gene (MDR1) and were followed for the persistence of these cells in vivo. Proviral DNA was detectable by polymerase chain reaction (PCR) in peripheral blood granulocytes and lymphocytes in the recipients of gene transduced progenitors up to 400 days posttransplantation. To examine the function of the MDR1 gene in vivo, recipient maromsets were challenged with docetaxel, an MDR effluxed drug, yet the overall level of gene transfer attained in vivo (<1% in peripheral blood granulocytes) was not sufficient to prevent the neutropenia induced by docetaxel treatment. Using this model, we safely and easily performed a series of in vivo studies in our small animal center. Our results show that this small nonhuman primate, the common marmoset, is a useful model for the evaluation of gene transfer methods targeting hematopoietic stem cells.


1998 ◽  
Vol 7 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Patrick Kofler ◽  
Bettina Wiesenhofer ◽  
Christine Rehrl ◽  
Gottfried Baier ◽  
Günter Stockhammer ◽  
...  

Sufficient gene transfer into CNS-derived cells is the most crucial step to develop strategies for gene therapy. In this study liposome-mediated gene transfer using a β-galactosidase (β-GAL) reporter gene was performed in vitro (C6 glioma cells, NT2 neuronal precursor cells, 3T3 fibroblasts, primary glial cells) and in vivo. Using Trypan blue exclusion staining, optimal lipid concentration was observed in the range of 10-12 μg/mL. Under optimal conditions (80,000 cells/16 mm well, incubation overnight, lipid/DNA ratio = 1:18) a high transfection rate was achieved (<9% for C6 cells; <1% for NT2 cells). In primary cultures of glial cells a fair amount of positive stained cells (glial cell) was found, but the transfection efficiency was lower (<0.1%). A “boost-lipofection” markedly increased (twice) lipofection efficiency in C6 cells. Expression of β-GAL reached a maximum after 3-5 days. When the liposome–DNA complexes were injected/infused directly into the brains of adult rats, several weakly stained cells could be observed in the brain region adjacent to the injection site. It is concluded that liposome-mediated gene transfer is an efficient method for gene transfer into CNS cells in vitro, but the transfection efficiency into the rat brain in vivo is far too low and therefore not applicable.


2018 ◽  
Vol 2 (4) ◽  
pp. 671-678
Author(s):  
Pedro Esponda

This paper deals with the efficiency of in vivo gene transfer to the mouse cauda epididymis and its relation to androgens. Previous experiments in the female reproductive tract have indicated that the efficiency of transfection is related to the hormonal stage of the animal, nevertheless no analysis have been done in the male tract. We used in vivo gene transfer to the mouse cauda epididymis employing a gene construction that expresses the Green Fluorescent Protein (GFP). Untreated and Testosterone treated males were employed. Testosterone injections (5 μg/g weight) were done from 2 days before the gene transfer, and treatment continued each day during a total period of 15 days. Fluorescence microscopy observations showed the expression of GFP in the cytoplasm of the principal cells in the epididymal tubules. The application of the QWin Program that measures the percentage of fluorescent areas showed that they are increased in the epididymis of treated males. This increase was particularly observed two days after gene injections (from 32.24 % in untreated animals to 47.62 % in testosterone treated males) and after seven days (from 29.98 % to 43.05 %). The possibility to improve transfection efficiency would increase the knowledge on epididymal physiology and would permit to modify the fertilizing capacity in mammals.


2014 ◽  
Vol 1 ◽  
pp. 14028 ◽  
Author(s):  
Aurélie Moreau ◽  
Céline Vandamme ◽  
Mercedes Segovia ◽  
Marie Devaux ◽  
Mickaël Guilbaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document