COMPARTMENT SPECIFIC CYTOKINE SYNTHESIS OF ENDOTOXIN STIMULATED MONONUCLEAR CELLS (BLOOD/LUNG) FROM HEALTHY INDIVIDUALS AND MULTIPLY INJURED PATIENTS

Shock ◽  
1999 ◽  
Vol 12 (Supplement) ◽  
pp. 18
Author(s):  
T. Heukamp ◽  
M. M. ajetschak ◽  
G. Sailer ◽  
T. Hirsch ◽  
F. U. Schade ◽  
...  
2008 ◽  
Vol 31 (4) ◽  
pp. 3
Author(s):  
L Barrett ◽  
M Grant ◽  
R Liwski ◽  
K West

Background: The human immune system provides remarkable protection from a plethora of pathogens, but can cause damage when activated for a prolonged time (as inpersistent infections) or against self (autoimmunity). Therefore, mechanisms of immune system downregulation and control are imperative. There is little data on how the immune system is controlled in healthy individuals. We recently described a novel population of white blood cells that constitutively produce the immunomodulatory cytokine interleukin-10 (IL-10). Our objective was to further delineate the distribution of these cells in human and mouse models, as well as potential triggers for interleukin-10 production in vitro. Methods: Human and animal protocols were reviewed and approved by the institutional ethics board and animal care facilities, and informed consent was obtained from all human donors. The ex vivo percentage of peripheral blood CD36^+IL-10^+ mononuclear cells was assessed by intracellular flow cytometry in 10 healthy individuals. IL-10 production after exposure to twoCD36 ligands, thrombospondin and oxidized low density lipoprotein (oxLDL) was measured at 8 hours. Peripheral blood mononuclear cells and splenocytes from BL/6 (n=5) and Balb/c (n=1) micewere assessed for CD36^+IL-10^+ cells ex vivo as well. Results: The percentage of CD36^+IL-10^+ cells in peripheral blood fromhealthy individuals ranges between 0.1% and 0.9%. The percentage was similar in mouse peripheral blood, with a range of 0.4%-1.1%. These cells were also found in mouse spleen at a higher frequency than peripherally (1.1-1.5%). Human CD36^+IL-10^+ cells have more IL-10 when exposed to thrombospondin, oxLDL. Conclusions: Our novel population of IL-10 producing cells is found not only in healthy humans, but also in lymphoid tissue and blood from pathogen free mice. This highlights the evolutionary conservation of the cell across species, and suggests an important homeostatic function. The physiologic ligands for CD36 are ubiquitous in circulation, and ourin vitro data suggests a link between CD36 ligation and IL-10 production. IL-10 is a known immune system modulator, and its production by these cells may help maintain homeostaticcontrol of the immune system.


2021 ◽  
Vol 10 (4) ◽  
pp. 875
Author(s):  
Kawaljit Kaur ◽  
Shahram Vaziri ◽  
Marcela Romero-Reyes ◽  
Avina Paranjpe ◽  
Anahid Jewett

Survival and function of immune subsets in the oral blood, peripheral blood and gingival tissues of patients with periodontal disease and healthy controls were assessed. NK and CD8 + T cells within the oral blood mononuclear cells (OBMCs) expressed significantly higher levels of CD69 in patients with periodontal disease compared to those from healthy controls. Similarly, TNF-α release was higher from oral blood of patients with periodontal disease when compared to healthy controls. Increased activation induced cell death of peripheral blood mononuclear cells (PBMCs) but not OBMCs from patients with periodontal disease was observed when compared to those from healthy individuals. Unlike those from healthy individuals, OBMC-derived supernatants from periodontitis patients exhibited decreased ability to induce secretion of IFN-γ by allogeneic healthy PBMCs treated with IL-2, while they triggered significant levels of TNF-α, IL-1β and IL-6 by untreated PBMCs. Interaction of PBMCs, or NK cells with intact or NFκB knock down oral epithelial cells in the presence of a periodontal pathogen, F. nucleatum, significantly induced a number of pro-inflammatory cytokines including IFN-γ. These studies indicated that the relative numbers of immune subsets obtained from peripheral blood may not represent the composition of the immune cells in the oral environment, and that orally-derived immune effectors may differ in survival and function from those of peripheral blood.


2017 ◽  
Vol 31 (12) ◽  
pp. 624-630 ◽  
Author(s):  
Nina E. Glass ◽  
Clay Cothren Burlew ◽  
Jens Hahnhaussen ◽  
Sebastian Weckbach ◽  
Fredric M. Pieracci ◽  
...  

Cholesterol ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zahra Tavoosi ◽  
Hemen Moradi-Sardareh ◽  
Massoud Saidijam ◽  
Reza Yadegarazari ◽  
Shiva Borzuei ◽  
...  

ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran) during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75%) compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P<0.05). Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.


2013 ◽  
Vol 4 (4) ◽  
pp. 313-317 ◽  
Author(s):  
N.J. Hepburn ◽  
I. Garaiova ◽  
E.A. Williams ◽  
D.R. Michael ◽  
S. Plummer

The objective of this study was to examine the effect of daily probiotic supplementation upon the immune profile of healthy participants by the assessment of ex vivo cytokine production. Twenty healthy adult volunteers received a multi-strain probiotic supplement consisting of two strains of Lactobacillus acidophilus (CUL60 and CUL21), Bifidobacterium lactis (CUL34) and Bifidobacterium bifidum (CUL20) and fructooligosaccharide for 12 weeks. Blood samples were collected at baseline, 6 and 12 weeks. Peripheral blood mononuclear cells (PBMCs) were isolated and cultured ex vivo in the presence or absence of lipopolysaccharide and cytokine production was assessed. Postintervention, a significant decrease in the production of interleukin-6 and interleukin-1β was apparent when PBMCs were incubated in the presence of lipopolysaccharide, whilst a significant increase in IL-10 and transforning growth factor-β production was seen when the cells were incubated without an additional stimulus. This preliminary study demonstrates the potential of a multi-strain probiotic supplement to alter the immune response as demonstrated by changes in ex vivo cytokine production. Such results demonstrate the potential benefit of probiotic supplementation for healthy individuals and warrants further investigation.


1993 ◽  
Vol 35 (2) ◽  
pp. 333
Author(s):  
D. N. Teanby ◽  
D. F. Gorman ◽  
M. Sinha ◽  
D. A. Boot

Sign in / Sign up

Export Citation Format

Share Document