MULTIDRUG-RESISTANT ACINETOBACTER BAUMANII OUTBREAK IN A BURN CENTER.

2007 ◽  
Vol 55 (1) ◽  
pp. S305
Author(s):  
S. H. Stovall ◽  
T. Beavers-May ◽  
C. H. Gillam ◽  
M. D. Honeycutt ◽  
N. C. Tucker ◽  
...  
Author(s):  
V Singh ◽  
A B Khyriem, W V Lyngdoh ◽  
C J Lyngdoh

Objectives - Surgical site infections (SSI) has turn out to be a major problem even in hospital with most modern facilities and standard protocols of pre -operative preparation and antibiotic prophylaxis. Objective of this study is to know the prevalence of surgical site infection among the postoperative patients and to identify the relationship between SSI and etiological pathogens along with their antimicrobial susceptibility at North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences (NEIGRIHMS), Shillong. Methods - A retrospective case study conducted at NEIGRIHMS, among patients admitted to the surgical departments during the period between January 1st and December 31st 2016. Swabs from the surgical sites were collected under sterile conditions and standard bacteriological tests were performed for identification and appropriate statistical methods were employed to look for association between SSI and etiological pathogens. Results - Out of the 1284 samples included in the study, 192 samples showed evidence of SSI yielding an infection rate of 14.9%. The most commonly isolated bacteria were: Escherichia coli, Acinetobacter baumanii and Staphylococcus aureus, of the gram negative isolates 6.2% were multidrug resistant of which 19% were carbapenem resistant. Conclusion - SSI with multiple drug resistance strains and polymicrobial etiology reflects therapeutic failure. The outcome of the SSI surveillance in our hospital revealed that in order to decrease the incidence of SSI we would have to: a) incorporate a proper antibiotic stewardship  b) conduct periodic surveillance to keep a check on SSI d) educate medical staffs regarding the prevention of surgical site infection.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 745
Author(s):  
Melaine González-García ◽  
Fidel Morales-Vicente ◽  
Erbio Díaz Pico ◽  
Hilda Garay ◽  
Daniel G. Rivera ◽  
...  

Cm-p5 is a snail-derived antimicrobial peptide, which demonstrated antifungal activity against the pathogenic strains of Candida albicans. Previously we synthetized a cyclic monomer as well as a parallel and an antiparallel dimer of Cm-p5 with improved antifungal activity. Considering the alarming increase of microbial resistance to conventional antibiotics, here we evaluated the antimicrobial activity of these derivatives against multiresistant and problematic bacteria and against important viral agents. The three peptides showed a moderate activity against Pseudomonas aeruginosa, Klebsiella pneumoniae Extended Spectrum β-Lactamase (ESBL), and Streptococcus agalactiae, with MIC values > 100 µg/mL. They exerted a considerable activity with MIC values between 25–50 µg/mL against Acinetobacter baumanii and Enterococcus faecium. In addition, the two dimers showed a moderate activity against Pseudomonas aeruginosa PA14. The three Cm-p5 derivatives inhibited a virulent extracellular strain of Mycobacterium tuberculosis, in a dose-dependent manner. Moreover, they inhibited Herpes Simplex Virus 2 (HSV-2) infection in a concentration-dependent manner, but had no effect on infection by the Zika Virus (ZIKV) or pseudoparticles of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2). At concentrations of >100 µg/mL, the three new Cm-p5 derivatives showed toxicity on different eukaryotic cells tested. Considering a certain cell toxicity but a potential interesting activity against the multiresistant strains of bacteria and HSV-2, our compounds require future structural optimization.


2018 ◽  
Vol 39 (5) ◽  
pp. 608-611 ◽  
Author(s):  
Dana L. Russell ◽  
Daniel Z. Uslan ◽  
Zachary A. Rubin ◽  
Tristan R. Grogan ◽  
Elise M. Martin

From 2000 to 2009, rates of multidrug-resistantAcinetobacter baumaniiincreased 10-fold to 0.2 per 1,000 patient days. From 2010 to 2015, however, rates markedly declined and have stayed below 0.05 per 1,000 patient days. Herein, we present a 15-year trend analysis and discuss interventions that may have led to the decline.Infect Control Hosp Epidemiol2018;39:608–611


2008 ◽  
Vol 33 (6) ◽  
pp. 1086-1090 ◽  
Author(s):  
Aikaterini Mastoraki ◽  
Evangelia Douka ◽  
Ioannis Kriaras ◽  
Georgios Stravopodis ◽  
Georgios Saroglou ◽  
...  

2015 ◽  
Vol 60 (3) ◽  
pp. 1249-1257 ◽  
Author(s):  
Hajime Kanamori ◽  
Christian M. Parobek ◽  
David J. Weber ◽  
David van Duin ◽  
William A. Rutala ◽  
...  

Next-generation sequencing (NGS) analysis has emerged as a promising molecular epidemiological method for investigating health care-associated outbreaks. Here, we used NGS to investigate a 3-year outbreak of multidrug-resistantAcinetobacter baumannii(MDRAB) at a large academic burn center. A reference genome from the index case was generated usingde novoassembly of PacBio reads. Forty-six MDRAB isolates were analyzed by pulsed-field gel electrophoresis (PFGE) and sequenced using an Illumina platform. After mapping to the index case reference genome, four samples were excluded due to low coverage, leaving 42 samples for further analysis. Multilocus sequence types (MLST) and the presence of acquired resistance genes were also determined from the sequencing data. A transmission network was inferred from genomic and epidemiological data using a Bayesian framework. Based on single-nucleotide variant (SNV) differences, this MDRAB outbreak represented three sequential outbreaks caused by distinct clones. The first and second outbreaks were caused by sequence type 2 (ST2), while the third outbreak was caused by ST79. For the second outbreak, the MLST and PFGE results were discordant. However, NGS-based SNV typing detected a recombination event and consequently enabled a more accurate phylogenetic analysis. The distribution of resistance genes varied among the three outbreaks. The first- and second-outbreak strains possessed ablaOXA-23-likegroup, while the third-outbreak strains harbored ablaOXA-40-likegroup. NGS-based analysis demonstrated the superior resolution of outbreak transmission networks for MDRAB and provided insight into the mechanisms of strain diversification between sequential outbreaks through recombination.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Hajime Kanamori ◽  
Christian M. Parobek ◽  
Jonathan J. Juliano ◽  
David van Duin ◽  
Bruce A. Cairns ◽  
...  

ABSTRACT Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacter cloacae has been recently recognized in the United States. Whole-genome sequencing (WGS) has become a useful tool for analysis of outbreaks and for determining transmission networks of multidrug-resistant organisms in health care settings, including carbapenem-resistant Enterobacteriaceae (CRE). We experienced a prolonged outbreak of CRE E. cloacae and K. pneumoniae over a 3-year period at a large academic burn center despite rigorous infection control measures. To understand the molecular mechanisms that sustained this outbreak, we investigated the CRE outbreak isolates by using WGS. Twenty-two clinical isolates of CRE, including E. cloacae (n = 15) and K. pneumoniae (n = 7), were sequenced and analyzed genetically. WGS revealed that this outbreak, which seemed epidemiologically unlinked, was in fact genetically linked over a prolonged period. Multiple mechanisms were found to account for the ongoing outbreak of KPC-3-producing E. cloacae and K. pneumoniae. This outbreak was primarily maintained by a clonal expansion of E. cloacae sequence type 114 (ST114) with distribution of multiple resistance determinants. Plasmid and transposon analyses suggested that the majority of bla KPC-3 was transmitted via an identical Tn4401b element on part of a common plasmid. WGS analysis demonstrated complex transmission dynamics within the burn center at levels of the strain and/or plasmid in association with a transposon, highlighting the versatility of KPC-producing Enterobacteriaceae in their ability to utilize multiple modes to resistance gene propagation.


Burns ◽  
2017 ◽  
Vol 43 (1) ◽  
pp. 137-143 ◽  
Author(s):  
Keila de Cássia Ferreira de Almeida Silva ◽  
Mariana Alcântara Calomino ◽  
Gabriela Deutsch ◽  
Selma Rodrigues de Castilho ◽  
Geraldo Renato de Paula ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document