scholarly journals PARTIAL EPITHELIAL-TO-MESENCHYMAL TRANSITION AND T CELL-MEDIATED INFLAMMATION IN BENIGN NEPHROSCLEROSIS AND DIABETIC NEPHROPATHY

2021 ◽  
Vol 39 (Supplement 1) ◽  
pp. e266
Author(s):  
Ole Petter Nordbø ◽  
Lea Landolt ◽  
Øystein Eikrem ◽  
Andreas Scherer ◽  
Sabine Leh ◽  
...  
2021 ◽  
Vol 22 (10) ◽  
pp. 5194
Author(s):  
Paola Pontrelli ◽  
Francesca Conserva ◽  
Rossella Menghini ◽  
Michele Rossini ◽  
Alessandra Stasi ◽  
...  

Diabetic nephropathy (DN) is the most frequent cause of end-stage renal disease. Tubulointerstitial accumulation of lysine 63 (K63)-ubiquitinated (Ub) proteins is involved in the progression of DN fibrosis and correlates with urinary miR-27b-3p downregulation. We explored the renoprotective effect of an inhibitor of K63-Ub (NSC697923), alone or in combination with the ACE-inhibitor ramipril, in vitro and in vivo. Proximal tubular epithelial cells and diabetic DBA/2J mice were treated with NSC697923 and/or ramipril. K63-Ub protein accumulation along with α-SMA, collagen I and III, FSP-1, vimentin, p16INK4A expression, SA-α Gal staining, Sirius Red, and PAS staining were measured. Finally, we measured the urinary albumin to creatinine ratio (uACR), and urinary miR-27b-3p expression in mice. NSC697923, both alone and in association with ramipril, in vitro and in vivo inhibited hyperglycemia-induced epithelial to mesenchymal transition by significantly reducing K63-Ub proteins, α-SMA, collagen I, vimentin, FSP-1 expression, and collagen III along with tubulointerstitial and glomerular fibrosis. Treated mice also showed recovery of urinary miR-27b-3p and restored expression of p16INK4A. Moreover, NSC697923 in combination with ramipril demonstrated a trend in the reduction of uACR. In conclusion, we suggest that selective inhibition of K63-Ub, when combined with the conventional treatment with ACE inhibitors, might represent a novel treatment strategy to prevent the progression of fibrosis and proteinuria in diabetic nephropathy and we propose miR-27b-3p as a biomarker of treatment efficacy.


2019 ◽  
Vol 44 (3) ◽  
pp. 331-343
Author(s):  
Jiali Yu ◽  
Rong Dong ◽  
Jingjing Da ◽  
Jiayu Li ◽  
Fuxun Yu ◽  
...  

Background/Aim: Renal fibrosis is essential for the progression of diabetic nephropathy (DN). Macrophages accumulate in diabetic kidneys and are involved in epithelial-to-mesenchymal transition (EMT), a vital mechanism leading to renal fibrosis. Recently, high-mobility group nucleosome-binding protein 1(HMGN1) was documented in promoting the recruitment and activation of antigen-presenting cells. In this study, we first reported its roles in renal fibrosis and the underlying mechanism associated with macrophage filtration and EMT. Methods: Twenty C57BL/6J mice were administered streptozotocin (STZ) to induce diabetes for 6 weeks and then divided into 4 groups: normal control group; DN group; benazepril-treated group, and insulin-treated group. Blood glucose, creatinine, and albumin in urine, hematoxylin and eosin, and Sirius red staining of kidney tissues were used to assess the renal pathology. ELISA, immunochemistry, and in situ hybridization were performed to determine the expression of HMGN1, CD68, F4/80, α-smooth muscle actin, and E-cadherin. Results: The renal expression levels of HMGN1, macrophage markers, and EMT makers were increased in DN group, and insulin treatment could reduce the overexpression of these indicators with a better effect than benazepril treatment. Both treatments could not obviously ameliorate urine albumin-to-creatinine ratio, collagen expression, and renal histological changes in STZ-induced diabetic mice. Correlation analysis indicated that there was a relationship among HMGN1, macrophage markers, EMT markers, and collagen expression in DN mice. Conclusion: HMGN1 may promote macrophages accumulation and EMT, suggesting a potential therapeutic target for preventing renal fibrosis development in DN.


Aging Cell ◽  
2017 ◽  
Vol 16 (2) ◽  
pp. 387-400 ◽  
Author(s):  
Yanru Zhao ◽  
Zhongwei Yin ◽  
Huaping Li ◽  
Jiahui Fan ◽  
Shenglan Yang ◽  
...  

Author(s):  
Pedro Marques ◽  
Sayka Barry ◽  
Eivind Carlsen ◽  
David Collier ◽  
Amy Ronaldson ◽  
...  

Abstract Non-tumoural cells within the tumour microenvironment (TME) influence tumour proliferation, invasiveness and angiogenesis. Little is known about TME in pituitary neuroendocrine tumours (PitNETs). We aimed to characterise the role of TME in the aggressive behaviour of PitNETs, focusing on immune cells and cytokines. The cytokine secretome of 16 clinically non-functioning PitNETs (NF-PitNETs) and 8 somatotropinomas was assessed in primary culture using an immunoassay panel with 42 cytokines. This was correlated with macrophage (CD68, HLA-DR, CD163), T-lymphocyte (CD8, CD4, FOXP3), B-lymphocyte (CD20), neutrophil (neutrophil elastase) and endothelial cells (CD31) content, compared to normal pituitaries (NPs, n = 5). In vitro tumour–macrophage interactions were assessed by conditioned medium (CM) of GH3 (pituitary tumour) and RAW264.7 (macrophage) cell lines on morphology, migration/invasion, epithelial-to-mesenchymal transition and cytokine secretion. IL-8, CCL2, CCL3, CCL4, CXCL10, CCL22 and CXCL1 are the main PitNET-derived cytokines. PitNETs with increased macrophage and neutrophil content had higher IL-8, CCL2, CCL3, CCL4 and CXCL1 levels. CD8+ T-lymphocytes were associated to higher CCL2, CCL4 and VEGF-A levels. PitNETs had more macrophages than NPs (p < 0.001), with a 3-fold increased CD163:HLA-DR macrophage ratio. PitNETs contained more CD4+ T-lymphocytes (p = 0.005), but fewer neutrophils (p = 0.047) with a 2-fold decreased CD8:CD4 ratio. NF-PitNETs secreted more cytokines and had 9 times more neutrophils than somatotropinomas (p = 0.002). PitNETs with higher Ki-67 had more FOXP3+ T cells, as well as lower CD68:FOXP3, CD8:CD4 and CD8:FOXP3 ratios. PitNETs with “deleterious immune phenotype” (CD68hiCD4hiFOXP3hiCD20hi) had a Ki-67 ≥ 3%. CD163:HLA-DR macrophage ratio was positively correlated with microvessel density (p = 0.015) and area (p < 0.001). GH3 cell-CM increased macrophage chemotaxis, while macrophage-CM changed morphology, invasion, epithelial-to-mesenchymal transition and secreted cytokines of GH3 cells. PitNETs are characterised by increased CD163:HLA-DR macrophage and reduced CD8:CD4 and CD8:FOXP3 T cell ratios. PitNET-derived chemokines facilitate macrophage, neutrophil and T cell recruitment into the tumours which can determine aggressive behaviour.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jong Ho Shin ◽  
Kyeong Min Kim ◽  
Jin Uk Jeong ◽  
Jae Min Shin ◽  
Ju Hyung Kang ◽  
...  

Background. Epithelial-to-mesenchymal transition (EMT) is thought to play a significant role in the advancement to chronic kidney disease and contributes to the deposition of extracellular matrix proteins and renal fibrosis relating to diabetic nephropathy. Method. We studied the effect of Nrf2-HO-1 signaling on high-glucose- (HG-) induced EMT in normal human tubular epithelial cells, that is, HK2 cells. In short, we treated HK2 cells with HG and sulforaphane (SFN) as an Nrf2 activator. EMT was evaluated by the expression activity of the epithelial marker E-cadherin and mesenchymal markers such as vimentin and fibronectin. Results. Exposure of HK2 cells to HG (60 mM) activated the expression of vimentin and fibronectin but decreased E-cadherin. Treatment of HK2 cells with SFN caused HG-induced attenuation in EMT markers with activated Nrf2-HO-1. We found that SFN decreased HG-induced production of reactive oxygen species (ROS), phosphorylation of PI3K/Akt at serine 473, and inhibitory phosphorylation of serine/threonine kinase glycogen synthase kinase-3β (GSK-3β) at serine 9. Subsequently, these signaling led to the downregulation of the Snail-1 transcriptional factor and the recovery of E-cadherin. Conclusion. The present study suggests that Nrf2-HO-1 signaling has an inhibitory role in the regulation of EMT through the modulation of ROS-mediated PI3K/Akt/GSK-3β activity, highlighting Nrf2-HO-1 and GSK-3β as potential therapeutic targets in diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document