Effects Of Resistance Training Volume And Whey Protein Supplementation On Lower-Body Strength And Muscle Cross-Sectional Area

Author(s):  
Ashley Walter ◽  
Katherine M Hoge ◽  
Trent J Herda ◽  
Pablo B Costa ◽  
Eric D Ryan ◽  
...  
Author(s):  
Priscila Carvalho Santos ◽  
Cleiton Augusto Libardi ◽  
Sanmy Rocha Nóbrega ◽  
Milena Barbon de Carvalho ◽  
Bryan Steve Martinez Galan ◽  
...  

AbstractThe purpose was to compare the effects of protein (whey protein) and carbohydrate supplementation and protein alone both combined with resistance training on muscle strength, muscle mass and total training volume progression in untrained young men. Resistance training was performed using the leg press and knee extension until concentric failure (8−12 repetition maximum), three times a week for eight weeks. Muscle strength and muscle cross-sectional area were assessed before and after training. Total training volume progression was calculated considering the first and eighth week. Seventeen men completed the study (protein and carbohydrate, n=9, age 23.44 ± 4.56 years, weight: 62.13±6.17 kg, height: 1.75±0.02 m, body mass index: 20.29±2.08 kg/m2; protein, n=8, age 24.63±2.39 years, weight: 69.01±5.57 kg, height: 1.77±0.07 m; body mass index: 21.64±1.05 kg/m2. Both protocols showed similar increases in muscle strength (effect size: protein and carbohydrate=1.28; protein=0.97; p<0.001), muscle cross sectional area (effect size: protein and carbohydrate=0.66; protein=0.47; p<0.001) and total training volume progression (effect size: protein and carbohydrate=2.68; protein=1.63; p<0.001) after training. No differences were found between groups p>0.05). Protein and carbohydrate supplementation combined with resistance training does not induce greater gains in muscle strength, hypertrophy and total training volume compared to resistance training combined with protein alone in untrained individuals.


2021 ◽  
Vol 51 (5) ◽  
pp. 991-1010
Author(s):  
Henrik Petré ◽  
Erik Hemmingsson ◽  
Hans Rosdahl ◽  
Niklas Psilander

Abstract Background The effect of concurrent training on the development of maximal strength is unclear, especially in individuals with different training statuses. Objective The aim of this systematic review and meta-analysis study was to compare the effect of concurrent resistance and endurance training with that of resistance training only on the development of maximal dynamic strength in untrained, moderately trained, and trained individuals. Methods On the basis of the predetermined criteria, 27 studies that compared effects between concurrent and resistance training only on lower-body 1-repetition maximum (1RM) strength were included. The effect size (ES), calculated as the standardised difference in mean, was extracted from each study, pooled, and analysed with a random-effects model. Results The 1RM for leg press and squat exercises was negatively affected by concurrent training in trained individuals (ES =  – 0.35, p < 0.01), but not in moderately trained ( – 0.20, p = 0.08) or untrained individuals (ES = 0.03, p = 0.87) as compared to resistance training only. A subgroup analysis revealed that the negative effect observed in trained individuals occurred only when resistance and endurance training were conducted within the same training session (ES same session =  – 0.66, p < 0.01 vs. ES different sessions =  – 0.10, p = 0.55). Conclusion This study demonstrated the novel and quantifiable effects of training status on lower-body strength development and shows that the addition of endurance training to a resistance training programme may have a negative impact on lower-body strength development in trained, but not in moderately trained or untrained individuals. This impairment seems to be more pronounced when training is performed within the same session than in different sessions. Trained individuals should therefore consider separating endurance from resistance training during periods where the development of dynamic maximal strength is prioritised.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Adrien J. Létocart ◽  
Franck Mabesoone ◽  
Fabrice Charleux ◽  
Christian Couppé ◽  
René B. Svensson ◽  
...  

Abstract Background To investigate how anatomical cross-sectional area and volume of quadriceps and triceps surae muscles were affected by ageing, and by resistance training in older and younger men, in vivo. Methods The old participants were randomly assigned to moderate (O55, n = 13) or high-load (O80, n = 14) resistance training intervention (12 weeks; 3 times/week) corresponding to 55% or 80% of one repetition maximum, respectively. Young men (Y55, n = 11) were assigned to the moderate-intensity strengthening exercise program. Each group received the exact same training volume on triceps surae and quadriceps group (Reps x Sets x Intensity). The fitting polynomial regression equations for each of anatomical cross-sectional area-muscle length curves were used to calculate muscle volume (contractile content) before and after 12 weeks using magnetic resonance imaging scans. Results Only Rectus femoris and medial gastrocnemius muscle showed a higher relative anatomical cross-sectional area in the young than the elderly on the proximal end. The old group displayed a higher absolute volume of non-contractile material than young men in triceps surae (+ 96%). After training, Y55, O55 and O80 showed an increase in total quadriceps (+ 4.3%; + 6.7%; 4.2% respectively) and triceps surae (+ 2.8%; + 7.5%; 4.3% respectively) volume. O55 demonstrated a greater increase on average gains compared to Y55, while no difference between O55 and O80 was observed. Conclusions Muscle loss with aging is region-specific for some muscles and uniform for others. Equivalent strength training volume at moderate or high intensities increased muscle volume with no differences in muscle volume gains for old men. These data suggest that physical exercise at moderate intensity (55 to 60% of one repetition maximum) can reverse the aging related loss of muscle mass. Trial registration NCT03079180 in ClinicalTrials.gov. Registration date: March 14, 2017.


2015 ◽  
Vol 116 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Felipe Damas ◽  
Stuart M. Phillips ◽  
Manoel E. Lixandrão ◽  
Felipe C. Vechin ◽  
Cleiton A. Libardi ◽  
...  

2005 ◽  
Vol 99 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Lars L. Andersen ◽  
Jesper L. Andersen ◽  
S. Peter Magnusson ◽  
Charlotte Suetta ◽  
Jørgen L. Madsen ◽  
...  

Previous studies show that cessation of resistance training, commonly known as “detraining,” is associated with strength loss, decreased neural drive, and muscular atrophy. Detraining may also increase the expression of fast muscle myosin heavy chain (MHC) isoforms. The present study examined the effect of detraining subsequent to resistance training on contractile performance during slow-to-medium velocity isokinetic muscle contraction vs. performance of maximal velocity “unloaded” limb movement (i.e., no external loading of the limb). Maximal knee extensor strength was measured in an isokinetic dynamometer at 30 and 240°/s, and performance of maximal velocity limb movement was measured with a goniometer during maximal unloaded knee extension. Muscle cross-sectional area was determined with MRI. Electromyographic signals were measured in the quadriceps and hamstring muscles. Twitch contractions were evoked in the passive vastus lateralis muscle. MHC isoform composition was determined with SDS-PAGE. Isokinetic muscle strength increased 18% ( P < 0.01) and 10% ( P < 0.05) at slow and medium velocities, respectively, along with gains in muscle cross-sectional area and increased electromyogram in response to 3 mo of resistance training. After 3 mo of detraining these gains were lost, whereas in contrast maximal unloaded knee extension velocity and power increased 14% ( P < 0.05) and 44% ( P < 0.05), respectively. Additionally, faster muscle twitch contractile properties along with an increased and decreased amount of MHC type II and MHC type I isoforms, respectively, were observed. In conclusion, detraining subsequent to resistance training increases maximal unloaded movement speed and power in previously untrained subjects. A phenotypic shift toward faster muscle MHC isoforms (I → IIA → IIX) and faster electrically evoked muscle contractile properties in response to detraining may explain the present results.


1999 ◽  
Vol 31 (Supplement) ◽  
pp. S325
Author(s):  
L. A. Gotshalk ◽  
B. C. Nindl ◽  
R. U. Newton ◽  
S. J. Fleck ◽  
K. H??kkinen ◽  
...  

2020 ◽  
Vol 28 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Darryn S. Willoughby ◽  
Kaitlan N. Beretich ◽  
Marcus Chen ◽  
LesLee K. Funderburk

Elevated circulating C-terminal agrin fragment (CAF) is a marker of neuromuscular junction degradation and sarcopenia. This study sought to determine if resistance training (RT) impacted the serum levels of CAF in perimenopausal (PERI-M) and postmenopausal (POST-M) women. A total of 35 women, either PERI-M or POST-M, participated in 10 weeks of RT. Body composition, muscle strength, and serum estradiol and CAF were determined before and after the RT. The data were analyzed with two-way analysis of variance (p ≤ .05). Upper body and lower body strength was significantly increased, by 81% and 73% and 86% and 79% for the PERI-M and POST-M participants, respectively; however, there were no significant changes in body composition. Estradiol was significantly less for the POST-M participants at pretraining compared with the PERI-M participants. CAF moderately increased by 22% for the PERI-M participants in response to RT, whereas it significantly decreased by 49% for the POST-M participants. Ten weeks of RT reduced the circulating CAF in the POST-M women and might play a role in attenuating degenerative neuromuscular junction changes.


Sign in / Sign up

Export Citation Format

Share Document