Centrocytoid Plasma Cells of the Germinal Center

2005 ◽  
Vol 13 (2) ◽  
pp. 124-131 ◽  
Author(s):  
I A Lampert ◽  
Susan Van Noorden ◽  
A C Wotherspoon
Keyword(s):  
1957 ◽  
Vol 106 (5) ◽  
pp. 627-640 ◽  
Author(s):  
L. G. Ortega ◽  
R. C. Mellors

The cellular sites of formation of γglobulin in lymphatic tissues of man and in a representative human lymphoid infiltrate have been studied by fluorescent antibody technique. The findings indicate that γ-globulin is formed in the germinal centers of lymphatic nodules and in the cytoplasm of mature and immature plasma cells of two types—those with and those without Russell bodies. The germinal center cells that synthesize γ-globulin have been designated "intrinsic" cells to distinguish them from the medium and large lymphocytes, and the primitive reticular cells that occur elsewhere and do not produce γ-globulin. Unlike the plasma cells, which function as individual units, the intrinsic cells apparently form γ-globulin only when they are arranged in discrete aggregations. The function, the blood supply, and the systematic cellular arrangement of germinal centers justifies the postulate that they are miniature organs of internal secretion of γ-globulin. The release of γ-globulin from its sites of formation appears to be accomplished by holocrine and apocrine secretion. Presumably, these secretory mechanisms are adaptations required for the production of antibody since they have not been described in parenchymal cells that form the other serum proteins. The cells found to form γ-globulin appear to be identical with those previously shown to form specific antibody in response to a variety of antigens in the experimental animal. This evidence indicates that normal γ-globulin, if it exists, originates in the same cells that produce antibody. It is suggested, also, that each of the 3 morphologically distinct categories of cells that synthesize γ-globulin represents a response to a particular form of antigenic stimulation. Nuclear participation in the process of γ-globulin synthesis was not detected by the technique employed.


2010 ◽  
Vol 207 (12) ◽  
pp. 2767-2778 ◽  
Author(s):  
Thomas Tiller ◽  
Juliane Kofer ◽  
Cornelia Kreschel ◽  
Christian E. Busse ◽  
Stefan Riebel ◽  
...  

Abnormalities in expression levels of the IgG inhibitory Fc gamma receptor IIB (FcγRIIB) are associated with the development of immunoglobulin (Ig) G serum autoantibodies and systemic autoimmunity in mice and humans. We used Ig gene cloning from single isolated B cells to examine the checkpoints that regulate development of autoreactive germinal center (GC) B cells and plasma cells in FcγRIIB-deficient mice. We found that loss of FcγRIIB was associated with an increase in poly- and autoreactive IgG+ GC B cells, including hallmark anti-nuclear antibody–expressing cells that possess characteristic Ig gene features and cells producing kidney-reactive autoantibodies. In the absence of FcγRIIB, autoreactive B cells actively participated in GC reactions and somatic mutations contributed to the generation of highly autoreactive IgG antibodies. In contrast, the frequency of autoreactive IgG+ B cells was much lower in spleen and bone marrow plasma cells, suggesting the existence of an FcγRIIB-independent checkpoint for autoreactivity between the GC and the plasma cell compartment.


2022 ◽  
Vol 219 (3) ◽  
Author(s):  
Xin Liu ◽  
Yongshan Zhao ◽  
Hai Qi

T-dependent humoral responses generate long-lived memory B cells and plasma cells (PCs) predominantly through germinal center (GC) reaction. In human and mouse, memory B cells and long-lived PCs are also generated during immune responses to T-independent antigen, including bacterial polysaccharides, although the underlying mechanism for such T-independent humoral memory is not clear. While T-independent antigen can induce GCs, they are transient and thought to be nonproductive. Unexpectedly, by genetic fate-mapping, we find that these GCs actually output memory B cells and PCs. Using a conditional BCL6 deletion approach, we show memory B cells and PCs fail to last when T-independent GCs are precluded, suggesting that the GC experience per se is important for programming longevity of T-independent memory B cells and PCs. Consistent with the fact that infants cannot mount long-lived humoral memory to T-independent antigen, B cells from young animals intrinsically fail to form T-independent GCs. Our results suggest that T-independent GCs support humoral memory, and GC induction may be key to effective vaccines with T-independent antigen.


2016 ◽  
Vol 113 (32) ◽  
pp. 9063-9068 ◽  
Author(s):  
Nilushi S. De Silva ◽  
Michael M. Anderson ◽  
Amanda Carette ◽  
Kathryn Silva ◽  
Nicole Heise ◽  
...  

The NF-κB signaling cascade relays external signals essential for B-cell growth and survival. This cascade is frequently hijacked by cancers that arise from the malignant transformation of germinal center (GC) B cells, underscoring the importance of deciphering the function of NF-κB in these cells. The NF-κB signaling cascade is comprised of two branches, the canonical and alternative NF-κB pathways, mediated by distinct transcription factors. The expression and function of the transcription factors of the alternative pathway, RELB and NF-κB2, in late B-cell development is incompletely understood. Using conditional deletion of relb and nfkb2 in GC B cells, we here report that ablation of both RELB and NF-κB2, but not of the single transcription factors, resulted in the collapse of established GCs. RELB/NF-κB2 deficiency in GC B cells was associated with impaired cell-cycle entry and reduced expression of the cell-surface receptor inducible T-cell costimulator ligand that promotes optimal interactions between B and T cells. Analysis of human tonsillar tissue revealed that plasma cells and their precursors in the GC expressed high levels of NF-κB2 relative to surrounding lymphocytes. Accordingly, deletion of nfkb2 in murine GC B cells resulted in a dramatic reduction of antigen-specific antibody-secreting cells, whereas deletion of relb had no effect. These results demonstrate that the transcription factors of the alternative NF-κB pathway control distinct stages of late B-cell development, which may have implications for B-cell malignancies that aberrantly activate this pathway.


1998 ◽  
Vol 187 (8) ◽  
pp. 1169-1178 ◽  
Author(s):  
Christophe Arpin ◽  
Odette de Bouteiller ◽  
Diane Razanajaona ◽  
Isabelle Fugier-Vivier ◽  
Francine Brière ◽  
...  

Human myeloma are incurable hematologic cancers of immunoglobulin-secreting plasma cells in bone marrow. Although malignant plasma cells can be almost eradicated from the patient's bone marrow by chemotherapy, drug-resistant myeloma precursor cells persist in an apparently cryptic compartment. Controversy exists as to whether myeloma precursor cells are hematopoietic stem cells, pre–B cells, germinal center (GC) B cells, circulating memory cells, or plasma blasts. This situation reflects what has been a general problem in cancer research for years: how to compare a tumor with its normal counterpart. Although several studies have demonstrated somatically mutated immunoglobulin variable region genes in multiple myeloma, it is unclear if myeloma cells are derived from GCs or post-GC memory B cells. Immunoglobulin (Ig)D-secreting myeloma have two unique immunoglobulin features, including a biased λ light chain expression and a Cμ–Cδ isotype switch. Using surface markers, we have previously isolated a population of surface IgM−IgD+CD38+ GC B cells that carry the most impressive somatic mutation in their IgV genes. Here we show that this population of GC B cells displays the two molecular features of IgD-secreting myeloma cells: a biased λ light chain expression and a Cμ–Cδ isotype switch. The demonstration of these peculiar GC B cells to differentiate into IgD-secreting plasma cells but not memory B cells both in vivo and in vitro suggests that IgD-secreting plasma and myeloma cells are derived from GCs.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


Sign in / Sign up

Export Citation Format

Share Document