SERUEM FROM RENAL TRANSPLANT RECIPIENTS IMPROVES MARKERS OF IN VITRO ENDOTHELIAL CELL ACTIVATION COMPARED TO DIALYSIS RECIPIENTS, BUT NOT TO BASELINE LEVELS.

2008 ◽  
Vol 86 (Supplement) ◽  
pp. 43
Author(s):  
S Sen ◽  
W Y. Sun ◽  
T Coates ◽  
S McDonald ◽  
C Bonder
2021 ◽  
Vol 9 (6) ◽  
pp. 1305
Author(s):  
Carlos Alonso Domínguez-Alemán ◽  
Luis Alberto Sánchez-Vargas ◽  
Karina Guadalupe Hernández-Flores ◽  
Andrea Isabel Torres-Zugaide ◽  
Arturo Reyes-Sandoval ◽  
...  

A common hallmark of dengue infections is the dysfunction of the vascular endothelium induced by different biological mechanisms. In this paper, we studied the role of recombinant NS1 proteins representing the four dengue serotypes, and their role in promoting the expression and release of endocan, which is a highly specific biomarker of endothelial cell activation. We evaluated mRNA expression and the levels of endocan protein in vitro following the stimulation of HUVEC and HMEC-1 cell lines with recombinant NS1 proteins. NS1 proteins increase endocan mRNA expression 48 h post-activation in both endothelial cell lines. Endocan mRNA expression levels were higher in HUVEC and HMEC-1 cells stimulated with NS1 proteins than in non-stimulated cells (p < 0.05). A two-fold to three-fold increase in endocan protein release was observed after the stimulation of HUVECs or HMEC-1 cells with NS1 proteins compared with that in non-stimulated cells (p < 0.05). The blockade of Toll-like receptor 4 (TLR-4) signaling on HMEC-1 cells with an antagonistic antibody prevented NS1-dependent endocan production. Dengue-infected patients showed elevated serum endocan levels (≥30 ng/mL) during early dengue infection. High endocan serum levels were associated with laboratory abnormalities, such as lymphopenia and thrombocytopenia, and are associated with the presence of NS1 in the serum.


1993 ◽  
Vol 100 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Johan R. Westphal ◽  
Henrica W. Willems ◽  
Cornelia J.M. Schalkwijk ◽  
Dirk J. Ruiter ◽  
Robert M.W. de Waal

2013 ◽  
Vol 32 (2) ◽  
pp. 154-161 ◽  
Author(s):  
Paul O. Zamora ◽  
Yi Liu ◽  
Henry Guo ◽  
Xinhua Lin

The biocompatibility/inflammation profile of B2A-coated ceramic granules was evaluated using a panel of standard biocompatibility protocols (International Organization for Standardization-10993) including skin irritation and delayed-type hypersensitivity (Kligman maximization test), as well as acute, subacute, and chronic toxicity. Additionally, the potential of B2A-coated granules to elicit inflammatory reactions was also assessed using in vivo air pouch models, and B2A was evaluated using in vitro models of leukocyte recruitment and endothelial cell activation. Overall, the findings demonstrate that B2A-coated ceramic granules exhibit good biocompatibility profiles in the murine air pouch model and in standard subcutaneous implant models, and B2A did not demonstrate evidence of leukocyte recruitment or endothelial cell activation. These findings suggest that B2A and B2A-coated granules have little, if any, propensity to initiate inflammation reactions based on leukocyte recruitment. Thus, traditional biocompatibility and specially designed inflammation models indicate a high degree of biocompatibility and a low possibility of toxicity, inflammation, or edema following the implant of B2A-coated granules.


BioTechniques ◽  
2020 ◽  
Vol 68 (6) ◽  
pp. 325-333
Author(s):  
Vinnyfred Vincent ◽  
Himani Thakkar ◽  
Anjali Verma ◽  
Atanu Sen ◽  
Nikhil Chandran ◽  
...  

One of the earliest events in the development of atherosclerosis is endothelial activation, which is estimated in vitro at the functional level by quantifying monocyte adhesion. This involves the incubation of fluorescently labeled monocytes on top of cultured endothelial cells and quantifying the number of adhered monocytes. Currently, the quantification of adhered monocytes is done using microscopy or by lysing the cells and estimating the fluorescence. Here we present a novel flow cytometry-based method for the quantification of monocyte adhesion. This method could quantify the average number of monocytes adhered to a single endothelial cell after monocyte adhesion assay, and was also sensitive to the level of activation of endothelial cells. Flow cytometry-based quantification requires less time and effort compared with microscopy-based quantification.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-8
Author(s):  
Jacqueline Adam ◽  
Thomas Gentinetta ◽  
Svetlana Diditchenko ◽  
Alexander Schaub ◽  
Gregory J Kato ◽  
...  

Hemoglobin (Hb) is one of the most abundant proteins in the human body. When red blood cells rupture, cell-free Hb may initiate adverse pathophysiological reactions. Pathophysiology triggered by cell-free Hb plays an important role in modifying the phenotype of sickle cell disease (SCD). SCD is caused by a single nucleotide mutation of the β-globin gene resulting in Hemoglobin-S (HbS) instead of the normal HbA found in healthy individuals. Polymerization of HbS shortens the lifespan of sickle red blood cells and promotes intra- and extravascular hemolysis. In cell-free Hb ferrous Hb (Fe2+) is oxidized into ferric Hb (Fe3+) promoting the dissociation and transfer of heme into lipid compartments where it triggers lipid peroxidation and generation of cytotoxic and pro-inflammatory reaction products. These processes promote endothelial cell activation and damage. The endogenous plasma protein hemopexin exhibits the highest binding affinity for heme and binds heme in a 1:1 binding ratio. Heme bound to hemopexin is rendered relatively non-reactive and is delivered safely to hepatocytes for endocytosis and degradation. To investigate the endothelial-protective function of hemopexin based on its ability to scavenge heme, we exposed human umbilical vein endothelial cells (HUVEC) in vitro to heme(NaOH) in the presence or absence of different hemopexin doses. As a read-out, different markers for endothelial cell activation were analyzed by either flow cytometry or multiplexed particle-based flow cytometry (Luminex). Briefly, confluent HUVEC were preincubated with hemopexin at different concentrations for 5 min before stimulation with heme(NaOH) for 25 min. Following stimulation cells were analyzed by flow cytometry for expression of membrane bound P-Selectin, a robust marker of endothelial cell activation. Alternatively, heme(NaOH) stimulation of hemopexin-preincubated HUVEC was conducted for 16 h and cell culture supernatants were analyzed by Luminex for three additional well-characterized plasma markers of endothelial cell activation: pro-inflammatory cytokine IL-8, cell adhesion molecule VCAM-1 and glycoprotein Von Willebrand factor (vWF). In the absence of hemopexin, heme(NaOH) consistently induced robust cell surface expression of P-Selectin and elevated levels of soluble IL-8, VCAM-1 and vWF. However, hemopexin completely blocked the stimulatory potential of heme as HUVEC exposed to pre-formed heme:hemopexin complexes showed unchanged P-Selectin expression levels compared to negative control samples. We found that hemopexin reduced heme(NaOH)-mediated P-selectin expression on HUVEC in a dose-dependent fashion. Once an equimolar ratio between heme and hemopexin was reached, P-selectin expression was abolished as shown in figure 1. In addition to P-Selectin, hemopexin also had a strong effect to reduce the heme-induced expression of IL-8, VCAM-1 and vWF to background levels. Thus, the presented data underlines on the one hand the stimulatory capacity of heme(NaOH) on endothelial cells and demonstrates on the other hand the potential of hemopexin to efficiently neutralize free heme. In a stoichiometric fashion, hemopexin potently prevents the pro-inflammatory effect of heme on endothelial cells. Hence, our study suggests a protective role of hemopexin for endothelial cells exposed to elevated levels of cell-free heme due to intravascular hemolysis. Additional experiments are required to elucidate the effect of hemopexin on the endothelium in more detail. Combined with our other lines of data, our results further support the investigation of hemopexin as a potential therapeutic agent in the treatment of sickle cell disease. Disclosures Adam: CSL Behring AG: Current Employment. Gentinetta:CSL Behring: Current Employment. Diditchenko:CSL Behring AG: Current Employment. Schaub:CSL Behring AG: Current Employment. Kato:CSL Behring AG: Current Employment. Brinkman:CSL Behring: Current Employment. Zuercher:CSL Behring AG: Current Employment.


2008 ◽  
Vol 20 (9) ◽  
pp. 112
Author(s):  
Q. Chen ◽  
C. Viall ◽  
P. R. Stone ◽  
L. W. Chamley

Preeclampsia is characterised by elevated maternal blood pressure which is preceded by endothelial activation. The cause of this endothelial cell dysfunction is unclear but it appears to be triggered by a placental factor. One of the risk factors for developing preeclampsia is the presence of antiphospholipid antibodies (aPL) in the maternal blood but exactly how aPL predispose women to developing preeclampsia is unclear. A second feature known to be associated with preeclampsia is excessive shedding and deportation of dead trophoblasts. We have previously shown that shed trophoblasts are phagocytosed by endothelial cells and that phagocytosis of necrotic trophoblasts leads to endothelial cell activation1. In this study we examined the hypothesis that aPL alter the number or nature of trophoblasts shed from the placenta resulting in endothelial cell activation. Using our published model of trophoblast shedding 2 human first trimester placental explants were treated with monoclonal aPL, IIC5 or ID2, or control antibody CD45 for 72 h. Shed trophoblasts then were harvested and counted using a Cellometer AutoT4 automated cell counter. The activity of caspases 3&7 was analysed in all treated shed trophoblasts using a FLICA™ kit. The treated shed trophoblasts also were exposed to the endothelial cell line HMEC-1 for 24 h. The level of ICAM-1 by HMEC-1 was determined by cell-based ELISA. The number of trophoblasts shed from placental explants was increased 2 fold following aPL treatment whereas, treatment with CD45 resulted in only a 1.3 fold increase in shedding. Trophoblasts shed from aPL-treated explants contained less active caspases 3 & 7 compared with control shed trophoblasts. Moreover, phagocytosis of trophoblasts shed from aPL-treated explants induced significantly increased expression of ICAM-1 compared with controls. aPL treatment affected the number and nature of trophoblasts shed from placentae in such a way that phagocytosing endothelium become activated. These findings suggest that aPL treatment may have shifted the type of cell death that shed trophoblasts are undergoing from apoptosis to a more necrotic or aponecrotic mechanism. This type of shedding of trophoblasts in vivo might contribute to the endothelial cell activation which is a hallmark feature of preeclampsia. (1) Chen Q, Stone PR, McCowan LM et al. Phagocytosis of necrotic but not apoptotic trophoblasts induces endothelial cell activation. Hypertension. 2006;47:116–121. (2) Abumaree MH, Stone PR, Chamley LW. An in vitro model of human placental trophoblast deportation/shedding. Mol Hum Reprod. 2006;12:687–694.


Sign in / Sign up

Export Citation Format

Share Document