TCR-independent Activation in Presence of a Src-family Kinase Inhibitor Improves CAR-T Cell Product Attributes

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Gauri Lamture ◽  
Alan Baer ◽  
Joseph W. Fischer ◽  
Winston Colon-Moran ◽  
Nirjal Bhattarai
Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4001-4001
Author(s):  
Lindsey A. Murphy ◽  
Russell Marians ◽  
Mark Eric Kohler ◽  
Terry J. Fry ◽  
Amanda C. Winters

Abstract Chimeric antigen receptor (CAR) T cell therapy is a rapidly evolving immunotherapeutic treatment modality for adult and pediatric patients with a variety of cancers, which has been most extensively investigated in B-cell malignancies. Given that CAR T cell immunotherapy involves changing the genetic composition of a patient's T cells, this living drug presents unique safety and quality control challenges. Vector copy number (VCN), a measurement of transgene copies within a CAR T cell product, is a product-specific characteristic that must be quantified prior to patient administration as high VCN increases the risk of insertional mutagenesis. Historically, VCN assessment in CAR T cell products has been performed via qPCR. qPCR is reliable along a broad range of concentrations but has inherent limitations in its lower limit of detection and limit of quantification. Digital PCR (dPCR) methods were developed for absolute quantification of target sequences by counting nucleic acid molecules encapsulated in discrete, volumetrically defined partitions. Advantages of dPCR compared to qPCR include simplicity, reproducibility, lower limit of detection, and definitive quantification. In this present study, we developed an assay for analysis of the novel bicistronic UCD19x22 CAR T cell construct, which was developed in the laboratory of Dr. Terry Fry at the University of Colorado and will be moving in to clinical trials later this year. Custom primer-probe assays were designed using Primer Express v3.0.1 and the ThermoFisher Custom TaqMan Assay Design Tool. As an internal control, forward and reverse primers as well as a VIC-labeled probe specific to human albumin (NCBI gene 213, HGNC:399) were designed. Primers and a FAM-labeled probe assay, specific for the bicistronic CD19x22 CAR T cell product, were designed at the junction site between the two distinct CARs. This study compares two different digital PCR modalities: (1) droplet digital PCR (ddPCR) via the BioRad QX200 system which utilizes water-in-oil droplet partitions and (2) the QIAcuity digital PCR system utilizing a nanoplate-based partitioning platform. While dPCR is a newer methodology compared to ddPCR, the two apply parallel procedures, data generation, and analyses. The primer/probe assay was validated with qPCR, dPCR and ddPCR using patient samples from preclinical CAR T cell manufacturing production runs, as well as Jurkat cell subclones which stably express this bicistronic CAR T product. We successfully developed an assay to specifically detect and quantify our bicistronic CD19xCD22 CAR transgene. ddPCR confirmed the specificity of this assay to detect only the bicistronic CAR product without any signal detected in samples containing untransduced T cells or T cells transduced with CD19 only CARs. Additionally, our assay gives accurate, precise, and reproducible CAR T cell VCN measurements across qPCR, dPCR, and ddPCR modalities. We demonstrate that digital PCR strategies can be utilized for absolute quantification of CAR transgenes and VCN measurements, and that specific assays can be developed for detection of unique constructs. Future studies will evaluate the utility of this assay with digital PCR modalities in measuring CAR T cell persistence in clinical trial patient samples after receiving this novel CAR T cell product. Figure 1 Figure 1. Disclosures Fry: Sana Biotechnology: Current Employment, Current equity holder in publicly-traded company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
A. Samer Al-Homsi ◽  
Sebastien Anguille ◽  
Jason Brayer ◽  
Dries Deeren ◽  
Nathalie Meuleman ◽  
...  

Background Autologous CAR T-cell therapy targeting the B-cell maturation antigen (BCMA) has shown impressive objective response rates in patients with advanced multiple myeloma (MM). Clinical grade manufacturing of autologous CAR T-cells has limitations including vein-to-vein delivery time delay and potentially sub-optimal immunological capability of T-cells isolated from patients with advanced disease. Allogeneic CAR T-cell products, whereby cells from healthy third-party donors are used to generate an "off-the-shelf" CAR T-cell product, have the potential to overcome some of these issues. To circumvent the primary potential risk of graft-versus-host disease (GvHD) associated with the use of allogeneic T-cells, abrogation of the T-cell receptor (TCR) expression in the CAR T-cells, via gene editing, is being actively pursued. To avoid the potential safety risks and manufacturing challenges associated with gene editing, the allogeneic CYAD-211 CAR T-cell product exploits short hairpin RNA (shRNA) interference technology to down-regulate TCR expression thus avoiding the risk of life-threatening GvHD. Aim The aim is to generate a BCMA-specific allogeneic CAR T-cell product using a non-gene editing approach and study its activity both in vitro and in vivo. CYAD-211 combines a BCMA-specific CAR with a single optimized shRNA targeting the TCR CD3ζ subunit. Downregulation of CD3ζ impairs the TCR expression on the surface of the donor T-cells, preventing their reactivity with the normal host tissue cells and potential GvHD induction. Maintaining all the elements required for the therapy within a single vector (all-in-one vector) provides some significant manufacturing advantages, as a solitary selection step will isolate cells expressing all the desired traits. Results CYAD-211 cells produce high amounts of interferon-gamma (IFN-γ) during in vitro co-cultures with various BCMA-expressing MM cell lines (i.e., RPMI-8226, OPM-2, U266, and KMS-11). Cytotoxicity experiments confirmed that CYAD-211 efficiently kills MM cell lines in a BCMA-specific manner. The anti-tumor efficacy of CYAD-211 was further confirmed in vivo, in xenograft MM models using the RPMI-8226 and KMS-11 cell lines. Preclinical data also showed no demonstrable evidence of GvHD when CYAD-211 was infused in NSG mice confirming efficient inhibition of TCR-induced activation. Following FDA acceptance of the IND application, IMMUNICY-1, a first-in-human, open-label dose-escalation phase I clinical study evaluating the safety and clinical activity of CYAD-211 for the treatment of relapsed or refractory MM patients to at least two prior MM treatment regimens, is scheduled to begin recruitment. IMMUNICY-1 will evaluate three dose-levels of CYAD-211 (3x107, 1x108 and 3x108 cells/infusion) administered as a single infusion after a non-myeloablative conditioning (cyclophosphamide 300 mg/m²/day and fludarabine 30 mg/m²/day, daily for 3 days) according to a classical Fibonacci 3+3 design. Description of the study design and preliminary safety and clinical data from the first cohort will be presented at ASH 2020. Conclusion CYAD-211 is the first generation of non-gene edited allogeneic CAR T-cell product based on shRNA technology. The IMMUNICY-1 clinical study seeks to provide proof of principle that single shRNA-mediated knockdown can generate fully functional allogeneic CAR T-cells in humans without GvHD-inducing potential. We anticipate that subsequent generations of this technology will incorporate multiple shRNA hairpins within a single vector system. This will enable the production of allogeneic CAR T-cells in which multiple genes of interest are modulated simultaneously thereby providing a platform approach that can underpin the future of this therapeutic modality. Figure 1 Disclosures Al-Homsi: Celyad: Membership on an entity's Board of Directors or advisory committees. Brayer:Janssen: Consultancy; Bristol-Myers Squibb, WindMIL Therapeutics: Research Funding; Bristol-Myers Squibb, Janssen, Amgen: Speakers Bureau. Nishihori:Novartis: Other: Research support to institution; Karyopharm: Other: Research support to institution. Sotiropoulou:Celyad Oncology: Current Employment. Twyffels:Celyad Oncology: Current Employment. Bolsee:Celyad Oncology: Current Employment. Braun:Celyad Oncology: Current Employment. Lonez:Celyad Oncology: Current Employment. Gilham:Celyad Oncology: Current Employment. Flament:Celyad Oncology: Current Employment. Lehmann:Celyad Oncology: Current Employment.


2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i39-i39
Author(s):  
Aaron Mochizuki ◽  
Sneha Ramakrishna ◽  
Zina Good ◽  
Shabnum Patel ◽  
Harshini Chinnasamy ◽  
...  

Abstract Introduction We are conducting a Phase I clinical trial utilizing chimeric antigen receptor (CAR) T-cells targeting GD2 (NCT04196413) for H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) and spinal cord diffuse midline glioma (DMG). Cerebrospinal fluid (CSF) is collected for correlative studies at the time of routine intracranial pressure monitoring via Ommaya catheter. Here we present single cell RNA-sequencing results from the first 3 subjects. Methods Single cell RNA-sequencing was performed utilizing 10X Genomics on cells isolated from CSF at various time points before and after CAR T-cell administration and on the CAR T-cell product. Output was aligned with Cell Ranger and analyzed in R. Results As detailed in the Majzner et al. abstract presented at this meeting, three of four subjects treated at dose-level one exhibited clear radiographic and/or clinical benefit. We have to date completed single cell RNA-sequencing for three of these four subjects (two with benefit, one without). After filtering out low-quality signals and doublets, 89,604 cells across 3 subjects were analyzed. Of these, 4,122 cells represent cells isolated from CSF and 85,482 cells represent CAR T-cell product. Two subjects who demonstrated clear clinical and radiographic improvement exhibited fewer S100A8+S100A9+ myeloid suppressor-cells and CD25+FOXP3+ regulatory T-cells in the CSF pre-infusion compared to the subject who did not derive a therapeutic response. In one subject with DIPG who demonstrated improvement, polyclonal CAR T-cells detectable in CSF at Day +14 demonstrated enrichment of CD8A, GZMA, GNLY and PDCD1 compared to the pre-infusion CAR T-cells by trajectory analysis, suggesting differentiation toward a cytotoxic phenotype; the same subject exhibited increasing numbers of S100A8+S100A9+ myeloid cells and CX3CR1+P2RY12+ microglia over time. Further analyses will be presented as data become available. Conclusions The presence of immunosuppressive myeloid populations, detectable in CSF, may correlate to clinical response in CAR T cell therapy for DIPG/DMG.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3154-3154 ◽  
Author(s):  
Weijun Fu ◽  
Juan Du ◽  
Hua Jiang ◽  
Zhi CHENG ◽  
Runhong Wei ◽  
...  

Background: Encouraging results are seen from several early phase clinical trials on the cellular immunotherapy based on chimeric antigen receptor (CAR)-engineered T (CAR-T) targeting B cell maturation antigen (BCMA) for the treatment of relapsed/refractory (RR) multiple myeloma (MM). We developed an anti-BCMA CAR-T cell product manufactured via gamma-retrovirus-mediated transduction of activated T cells to express a second-generation CAR with the 4-1BB costimulatory domain along with a truncated epidermal growth factor receptor (tEGFR) as a safety switch. The preclinical study confirmed its high reactivity against MM cells. Methods: A phase 1 clinical trial (NCT03093168) has been launched to evaluate the safety and feasibility of this BCMA CAR-T cell product for treating RRMM. The enrolled RRMM patients had received at least 2 prior treatment regimens, including a proteasome inhibitor and an immunomodulatory agent, or are double-refractory, and have over 5% BCMA expression on plasma cells (Nine patient with extramedullary plasmacytoma does not express BCMA). Patients were subjected to a lymphodepleting regimen with Cy (300 mg/m2, d-5 to d-3) and Flu daily for 3 days (25 mg/m2, d-5 to d-3) prior to the CAR-T infusion (d0) at a dose of 9×106CAR+ cells/kg. The efficacy was assessed by the International Uniform Response Criteria for Multiple Myeloma, and the toxicity is graded by CTCAE 4.03. Results: As of March 1th, 2019, 46 patients had been infused with this intended dose of the autologous BCMA CAR-T cells, and 44 patients had reached at least 1 month of follow-up. As of this data cut-off, the overall response rate (ORR) for the 44 evaluable patients was 79.6%, including 2sCRs, 16CRs, 8VGPRs and 8PRs, and 16 patients reached MRD-negative response. The CAR-T cell expansion and persistence were consistently observed throughout these patients. The medianPFS is 15mon, and the median OS result has not been reached (49.16% progression-free survival, and 53.95% overall survival at 24 months). Among the 44 infused patients, 22.7% had grade 1-2 Cytokine release syndrome (CRS ) and 6.8% (3 patients) had grade 3 CRS. No grade 4 CRS reactions developed and all toxicities were fully reversible. Conclusions: Our result demonstrates the high potential of this single CAR-T infusion therapy for RRMM, including 2sCRs, 16CRs and ongoing clinical responses for more than 26 months, with manageable CRS to date. These initial data provide strong evidence to support the further development of this anti-myeloma cellular immunotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2068-2068
Author(s):  
Parmeshwar Amatya ◽  
Matthew L. Cooper ◽  
Alun J Carter ◽  
John F. DiPersio

Introduction: Despite remarkable clinical efficacy, CAR-T therapy has been limited by life threatening toxicities in over 30% of patients.1, 2 Toxicities primarily manifest as cytokine release syndrome (CRS) characterized by an early phase with fever, hypotension and elevations of cytokines including IFNγ, GM-CSF, TNF, IL-10, and IL-6 and a later phase associated with life-threatening or life-ending neurologic events. We hypothesized that reversible inhibition of CAR mediated signaling will enable controllable regulation of CAR-T cell activity in vivo and mitigate CAR-T mediated toxicities. There are specific protein kinases such as the SRC kinases, LCK, and ZAP-70 that are known to be involved in various cellular signaling pathways, especially T cell receptor mediated signaling and may also be appropriate targets for modulating (both enhancing and inhibiting) CAR-T function in a rapid and reversible fashion in vivo. Our hypothesis is that small molecule inhibitors of TCR signaling and downstream pathways could be identified using specific high throughput screens. Methods: To identify novel inhibitors of CAR-T cell proliferation, we developed a high throughput kinase inhibitor screen to identify compounds that reversibly inhibit CAR-T function. T cells containing a third generation CAR targeting CD19 cells (CAR19) and CD19+ tumor cells (Ramos cells expressing both GFP and luciferase) were incubated at an effector to target ratio of 1:1 in 96 well plates in the presence of 1µM of each inhibitor. After 24 hours, tumor cell death induced by CAR-T was measured using bioluminescence (BLI) imaging. Small molecules that inhibited CAR-T proliferation and cytotoxicity were determined by assessing the BLI signal in each well. Results: A protein kinase inhibitor library (Selleckchem, Texas) containing 644 independent compounds was tested (Figure 1). Of the 644 kinase inhibitors tested, 32 were found to be potent inhibitors of CART19 cell activation and cytotoxic killing of CD19+ target tumor cells, reducing anti-tumor viability in 24 hours by >50% compared to vehicle control. Compounds such as Nintedanib (C3), Dasatinib (C9), and Saracatinib (C12), all SRC kinase inhibitors, were able to inhibit cell killing by 99%, 84%, and 76% respectively. Next we assessed the reversibility of CAR-T cell mediated killing upon removal of inhibitors from the cultures. Reinitiation of potent, anti-tumor activity was observed within 24 hours after inhibitor removal, confirming reversible nature of CAR-T cell inhibition by the three most potent compounds. Conclusions: Recent publications (Weber et al Blood Adv, 2018, Westermann et al. Sci Transl Med, 2019) have also shown that dasatinib can reversibly suppresses CAR-T cell cytotoxicity, cytokine secretion, and proliferation in vitro and in vivo. 3, 4 Here we confirm the reports of others regarding dasatinib and that show for the first time that reversible inhibition of CAR-T activity by kinase inhibitors is not limited solely to dasatanib, but is observed with other small molecules targeting many different kinases. This work further demonstrates the potential applications of tyrosine kinase inhibitors as a safety switch to modulate CAR-T cell toxicity. 1. Maude, NEJM 2014 2. Davila, SciTransMed 2014 3. Mestermann SciTransMed 2019 4. Weber. Blood Adv 2019 Disclosures Cooper: Wugen: Consultancy, Equity Ownership, Patents & Royalties. DiPersio:WUGEN: Equity Ownership, Patents & Royalties, Research Funding; Magenta Therapeutics: Equity Ownership; Celgene: Consultancy; Karyopharm Therapeutics: Consultancy; RiverVest Venture Partners Arch Oncology: Consultancy, Membership on an entity's Board of Directors or advisory committees; Cellworks Group, Inc.: Membership on an entity's Board of Directors or advisory committees; NeoImmune Tech: Research Funding; Bioline Rx: Research Funding, Speakers Bureau; Macrogenics: Research Funding, Speakers Bureau; Incyte: Consultancy, Research Funding; Amphivena Therapeutics: Consultancy, Research Funding.


2019 ◽  
Vol 129 (5) ◽  
pp. 2123-2132 ◽  
Author(s):  
Olivia C. Finney ◽  
Hannah Brakke ◽  
Stephanie Rawlings-Rhea ◽  
Roxana Hicks ◽  
Danielle Doolittle ◽  
...  
Keyword(s):  
T Cell ◽  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 7513-7513 ◽  
Author(s):  
Jeremy S. Abramson ◽  
Maria Lia Palomba ◽  
Leo I. Gordon ◽  
Matthew Alexander Lunning ◽  
Jon E. Arnason ◽  
...  

7513 Background: JCAR017 is a second-generation, CD19-directed, 4-1BB CAR T cell product comprising CD8 and CD4 CAR T cells in a 1:1 ratio. A multicenter phase 1 trial of JCAR017 in R/R B-cell NHL (NCT02631044) is underway. Methods: Patients with R/R DLBCL, PMBCL, FL grade 3B, or MCL and adequate organ function are eligible. There was no minimum ALC requirement for apheresis; no test expansion was required. Treatment includes lymphodepletion with fludarabine and cyclophosphamide, followed by JCAR017. Multiple dose levels (DLs)/administration schedules of JCAR017 are being evaluated. Study objectives include safety, PK, and antitumor response. Results: As of November 23, 2016, 28 patients have been treated and are evaluable for safety and efficacy. Nineteen were male, 9 female; 25 DLBCL, 2 MCL, and 1 FL grade 3B. Median age was 63 years (range 37-79), median number of prior therapies was 4 (range 1-8), 23 (82%) were refractory to their last chemotherapy, and 16 (57%) had prior transplant. No severe cytokine release syndrome (sCRS) was observed; 10 patients had grade 1-2 CRS (1 received tocilizumab). Five patients developed neurotoxicity, including 4 grade 3-4; all events resolved in the 4 patients who had adequate follow up. Median onset of CRS and neurotoxicity were 5 and 11 days, respectively. Four deaths after disease progression occurred, none related to JCAR017. In 20 patients treated at DL1 (5×107 cells), the RR was 80% with 60% achieving CR. One patient with secondary CNS involvement achieved CR without neurotoxicity. JCAR017 was detected at 3 and 6 months in responding patients, including some who relapsed; higher mean peak levels were detected in patients with durable response at 3 months. Data on patients treated at DL2 (1×108 cells), alternative dose schedules, tumor biopsy, and additional biomarkers will be presented. Conclusions: Treatment with JCAR017 results in high CR rate in patients with heavily pretreated R/R DLBCL. Relapses can occur despite persistence of JCAR017, suggesting tumor immune evasion mechanisms may contribute to relapse. Observed toxicities are manageable and occurred at rates lower than those reported for other CD19-directed CAR T cell products. Clinical trial information: NCT02631044.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3011-3011 ◽  
Author(s):  
Rebecca H Kim ◽  
Gabriela Plesa ◽  
Whitney Gladney ◽  
Irina Kulikovskaya ◽  
Bruce L Levine ◽  
...  

3011 Background: CAR T cells have produced remarkable responses in heme malignancies, but efficacy in solid cancers is limited. Poor in vivo persistence and heterogeneous expression of the CAR target on tumors are potential barriers to the success of CAR T cell therapy. However, even with transient persistence, CAR T cells may elicit a “vaccine” effect by inducing cancer cell death and subsequent release of tumor antigens that could stimulate tumor-specific T cell activity. Methods: 6 pts with pancreatic ductal adenocarcinoma (PDAC) received repeated 3x per week intravenous (iv) infusions of mRNA-transfected mesothelin-redirected CAR T cells (CARTmeso). Pts with PDAC (n = 5), ovarian carcinoma (n = 5), and mesothelioma (n = 5) received iv infusion of lentiviral-transduced (lenti) CARTmeso with or without cyclophosphamide (Cy) preconditioning. Peripheral blood samples were collected from pts at baseline and defined time points after treatment. Genomic DNA from these samples or from pre-infused CAR T cell product was used for deep sequencing of the TCRbeta chain using the ImmunoSEQ platform. A TCRbeta clone was considered to have expanded from baseline to defined time points after treatment if it showed a two-fold change from baseline and met statistical significance by Fisher’s exact test (p < 0.05). Results: mRNA CARTmeso cells persisted in vivo for < 24 hrs. Unexpectedly, therapy induced clonal T cell expansion detected in the blood by day 14 in all 6 pts. Expanded clones underwent contraction by day 28 in 3 pts. In one pt, peripherally expanded clones were also detected in a tumor biopsy, but without significant intratumoral clonal expansion. Lenti CARTmeso therapy also induced peripheral expansion of T cell clones both present and not present in the infused CAR T cell product. However, with Cy preconditioning, clonal expansion seen after lenti CARTmeso therapy was predominately restricted to clones detected in the CAR T cell product. Conclusions: In pts with advanced solid cancers, CARTmeso stimulates clonal expansion of endogenous T cells, which is lost with Cy conditioning. Findings suggest that CAR T cells may elicit a “vaccine” effect with potential therapeutic implications.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3035-3035
Author(s):  
Rebecca Alice Gardner ◽  
Colleen Annesley ◽  
Ashley Wilson ◽  
Corinne Summers ◽  
Prabha Narayanaswamy, ◽  
...  

3035 Background: Loss of CD19 expression is a major cause of limited durable B-ALL remission following CD19 CAR T cells, which might be overcome by utilization of dual CD19xCD22 CAR T cell targeting. Methods: A Phase I trial (NCT03330691) of SCRI-CAR19x22 was developed using dual transduction of lentiviral vectors encoding for either a CD19- or CD22-specific CAR T cell construct, both with 4-1BB co-stimulation. Manufacturing was performed in a closed G-Rex system with IL-7, IL-15 and IL-21. After lymphodepletion, CAR T cells were infused at 1 or 3 X 106 CAR T cells/kg dose levels. Leukemic response and CAR T cell persistence were evaluated by flow cytometry. Results: Products were successfully manufactured in all 28 enrolled subjects with 7.92 average days in culture (range of 7-11 days) and consisted of an average CD8:CD4 ratio of 3.09 (range 0.19 to 8.9). The cellular product CAR composition was 29% CD19, 31% CD22 and 39% CD19 and CD22 targeting. 13 subjects had prior exposure to CD19 or CD22 targeting therapies with diverse expression of CD19 and CD22 on the leukemic blasts. No dose limiting toxicities occurred in the 27 infused subjects. The recommended phase 2 dose is 3 x 106 CAR+ cells/kg. CRS was present in 80% of subjects, with 85% of CRS being grade 2 or less, and a peak grade of 3 (n = 3). Mild neurotoxicity occurred in 38%, with a single grade 3 event. 84.6% obtained a CR, of which 95% were MRD negative. Of the 4 subjects who did not achieved a CR, 2 had a pre-existing CD19 negative population and one had previously received CAR T cells and rejected SCRI-CAR19x22. There have been 4 relapses with varying CD19 and CD22 expression as follows: 1 CD19-CD22-, 1 CD19+CD22+, and 2 CD19-CD22+. The in vivo engraftment of CAR T cells peaked most frequently between day +7 and +14 and was predominated by the CD19 CAR+ T cells. Conclusions: We demonstrate manufacturing feasibility and safety of SCRI-CAR19x22. While initial efficacy is demonstrated, CD22 activity is poor due to limited expansion of the CD22 CAR-containing components and subjects with pre-existing CD19 negative leukemia fared poorly. Development of a revised CD22 CAR that exhibits a reduction tonic signaling is underway, with plans to explore the new construct in the context of a dual-targeting CD19xCD22 CAR T cell product. Clinical trial information: NCT03330691 .


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7532-7532
Author(s):  
Jordan Gauthier ◽  
Aisling Cearley ◽  
Paula Perkins ◽  
Angela Kirk ◽  
Mazyar Shadman ◽  
...  

7532 Background: CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cells achieve high response rates in patients (pts) with relapsed or refractory (R/R) aggressive B-cell non-Hodgkin lymphoma (NHL), but are limited by cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Pivotal trial data suggested distinct toxicity risks across CD19 CAR T-cell products, but differences in pt and disease characteristics may have confounded these observations. Thus, we assessed the independent impact of 3 CD19 CAR T-cell products (axicabtagene ciloleucel[axicel], tisagenlecleucel [tisacel], and JCAR014) on CRS and ICANS severity in 136 pts with R/R aggressive NHL. Methods: We retrospectively analyzed aggressive NHL pts treated at our institutions with cyclophosphamide and fludarabine lymphodepletion (LD) followed by CD19 CAR T-cell therapy. Axicel and tisacel pts were treated off trial using commercial products. JCAR014 (defined-composition 4-1BB-costimulated CD19 CAR T cells) was administered in all pts at the dose of 2x106/kg on a phase I/II clinical trial (NCT01865617). CRS and ICANS were graded according to the ASTCT criteria and CTCAE 4.03, respectively. We used multivariable proportional odds logistic regression to model CRS and ICANS grade. Results: The CAR T-cell product was axicel, tisacel, or JCAR014 in 50%, 28%, and 22% of pts, respectively. Compared to axicel pts, we observed higher preLD LDH levels in tisacel and JCAR014 pts, and lower preLD albumin with tisacel (p < 0.001) with comparable age and hematopoietic cell transplantation comorbidity (HCT-CI) indexes across CAR T-cell products. Higher day-28 overall response rate by Lugano criteria was observed after axicel (71%) compared to tisacel (56%) and JCAR014 (53%). Adjusting for age, HCT-CI, preLD LDH, preLD albumin, CAR T-cell product type was associated with CRS severity (tisacel versus [vs] axicel, OR = 0.45, p = 0.05; JCAR014 vs axicel, OR = 0.29, p = 0.005;). Age had limited or no impact on CRS severity (OR 95%CI, 0.97-1.02), while the effect of HCT-CI was undetermined (OR 95%CI, 0.85-1.27). In a multivariable model including the same covariates as above, CAR T-cell product type (tisacel vs axicel, OR =.14, p <.001; JCAR014 vs axicel, OR = 0.31, p = 0.009), preLD LDH (OR, 3.96 per log10 increase; p = 0.04) and age (OR per 10-year increase, 1.32; p =.06) were associated with ICANS severity. Interaction effect testing suggested effect modification of age by the CAR T-cell product type (tisacel/JCAR014 versus axicel, p = 0.06); using a multivariable model including this interaction term, the predicted probabilities of grade ≥3 ICANS in a 70 year-old after axicel, tisacel, and JCAR014 were 40%, 6%, and 8%, respectively. Conclusions: CAR T-cell product type independently impacts CRS and ICANS severity in NHL pts. Our findings provide key insights to guide patient and CAR T-cell product selection.


Sign in / Sign up

Export Citation Format

Share Document