scholarly journals OMIC-11. SINGLE CELL RNA SEQUENCING FROM THE CSF OF SUBJECTS WITH H3K27M+ DIPG/DMG TREATED WITH GD2 CAR T-CELLULAR THERAPY

2021 ◽  
Vol 23 (Supplement_1) ◽  
pp. i39-i39
Author(s):  
Aaron Mochizuki ◽  
Sneha Ramakrishna ◽  
Zina Good ◽  
Shabnum Patel ◽  
Harshini Chinnasamy ◽  
...  

Abstract Introduction We are conducting a Phase I clinical trial utilizing chimeric antigen receptor (CAR) T-cells targeting GD2 (NCT04196413) for H3K27M-mutant diffuse intrinsic pontine glioma (DIPG) and spinal cord diffuse midline glioma (DMG). Cerebrospinal fluid (CSF) is collected for correlative studies at the time of routine intracranial pressure monitoring via Ommaya catheter. Here we present single cell RNA-sequencing results from the first 3 subjects. Methods Single cell RNA-sequencing was performed utilizing 10X Genomics on cells isolated from CSF at various time points before and after CAR T-cell administration and on the CAR T-cell product. Output was aligned with Cell Ranger and analyzed in R. Results As detailed in the Majzner et al. abstract presented at this meeting, three of four subjects treated at dose-level one exhibited clear radiographic and/or clinical benefit. We have to date completed single cell RNA-sequencing for three of these four subjects (two with benefit, one without). After filtering out low-quality signals and doublets, 89,604 cells across 3 subjects were analyzed. Of these, 4,122 cells represent cells isolated from CSF and 85,482 cells represent CAR T-cell product. Two subjects who demonstrated clear clinical and radiographic improvement exhibited fewer S100A8+S100A9+ myeloid suppressor-cells and CD25+FOXP3+ regulatory T-cells in the CSF pre-infusion compared to the subject who did not derive a therapeutic response. In one subject with DIPG who demonstrated improvement, polyclonal CAR T-cells detectable in CSF at Day +14 demonstrated enrichment of CD8A, GZMA, GNLY and PDCD1 compared to the pre-infusion CAR T-cells by trajectory analysis, suggesting differentiation toward a cytotoxic phenotype; the same subject exhibited increasing numbers of S100A8+S100A9+ myeloid cells and CX3CR1+P2RY12+ microglia over time. Further analyses will be presented as data become available. Conclusions The presence of immunosuppressive myeloid populations, detectable in CSF, may correlate to clinical response in CAR T cell therapy for DIPG/DMG.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 27-28
Author(s):  
A. Samer Al-Homsi ◽  
Sebastien Anguille ◽  
Jason Brayer ◽  
Dries Deeren ◽  
Nathalie Meuleman ◽  
...  

Background Autologous CAR T-cell therapy targeting the B-cell maturation antigen (BCMA) has shown impressive objective response rates in patients with advanced multiple myeloma (MM). Clinical grade manufacturing of autologous CAR T-cells has limitations including vein-to-vein delivery time delay and potentially sub-optimal immunological capability of T-cells isolated from patients with advanced disease. Allogeneic CAR T-cell products, whereby cells from healthy third-party donors are used to generate an "off-the-shelf" CAR T-cell product, have the potential to overcome some of these issues. To circumvent the primary potential risk of graft-versus-host disease (GvHD) associated with the use of allogeneic T-cells, abrogation of the T-cell receptor (TCR) expression in the CAR T-cells, via gene editing, is being actively pursued. To avoid the potential safety risks and manufacturing challenges associated with gene editing, the allogeneic CYAD-211 CAR T-cell product exploits short hairpin RNA (shRNA) interference technology to down-regulate TCR expression thus avoiding the risk of life-threatening GvHD. Aim The aim is to generate a BCMA-specific allogeneic CAR T-cell product using a non-gene editing approach and study its activity both in vitro and in vivo. CYAD-211 combines a BCMA-specific CAR with a single optimized shRNA targeting the TCR CD3ζ subunit. Downregulation of CD3ζ impairs the TCR expression on the surface of the donor T-cells, preventing their reactivity with the normal host tissue cells and potential GvHD induction. Maintaining all the elements required for the therapy within a single vector (all-in-one vector) provides some significant manufacturing advantages, as a solitary selection step will isolate cells expressing all the desired traits. Results CYAD-211 cells produce high amounts of interferon-gamma (IFN-γ) during in vitro co-cultures with various BCMA-expressing MM cell lines (i.e., RPMI-8226, OPM-2, U266, and KMS-11). Cytotoxicity experiments confirmed that CYAD-211 efficiently kills MM cell lines in a BCMA-specific manner. The anti-tumor efficacy of CYAD-211 was further confirmed in vivo, in xenograft MM models using the RPMI-8226 and KMS-11 cell lines. Preclinical data also showed no demonstrable evidence of GvHD when CYAD-211 was infused in NSG mice confirming efficient inhibition of TCR-induced activation. Following FDA acceptance of the IND application, IMMUNICY-1, a first-in-human, open-label dose-escalation phase I clinical study evaluating the safety and clinical activity of CYAD-211 for the treatment of relapsed or refractory MM patients to at least two prior MM treatment regimens, is scheduled to begin recruitment. IMMUNICY-1 will evaluate three dose-levels of CYAD-211 (3x107, 1x108 and 3x108 cells/infusion) administered as a single infusion after a non-myeloablative conditioning (cyclophosphamide 300 mg/m²/day and fludarabine 30 mg/m²/day, daily for 3 days) according to a classical Fibonacci 3+3 design. Description of the study design and preliminary safety and clinical data from the first cohort will be presented at ASH 2020. Conclusion CYAD-211 is the first generation of non-gene edited allogeneic CAR T-cell product based on shRNA technology. The IMMUNICY-1 clinical study seeks to provide proof of principle that single shRNA-mediated knockdown can generate fully functional allogeneic CAR T-cells in humans without GvHD-inducing potential. We anticipate that subsequent generations of this technology will incorporate multiple shRNA hairpins within a single vector system. This will enable the production of allogeneic CAR T-cells in which multiple genes of interest are modulated simultaneously thereby providing a platform approach that can underpin the future of this therapeutic modality. Figure 1 Disclosures Al-Homsi: Celyad: Membership on an entity's Board of Directors or advisory committees. Brayer:Janssen: Consultancy; Bristol-Myers Squibb, WindMIL Therapeutics: Research Funding; Bristol-Myers Squibb, Janssen, Amgen: Speakers Bureau. Nishihori:Novartis: Other: Research support to institution; Karyopharm: Other: Research support to institution. Sotiropoulou:Celyad Oncology: Current Employment. Twyffels:Celyad Oncology: Current Employment. Bolsee:Celyad Oncology: Current Employment. Braun:Celyad Oncology: Current Employment. Lonez:Celyad Oncology: Current Employment. Gilham:Celyad Oncology: Current Employment. Flament:Celyad Oncology: Current Employment. Lehmann:Celyad Oncology: Current Employment.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1859-1859 ◽  
Author(s):  
Yongxian Hu ◽  
Zhang Yanlei ◽  
Guoqing Wei ◽  
Chang alex Hong ◽  
He Huang

Background BCMA CAR-T cells have demonstrated substantial clinical activity against relapsed/refractory multiple myeloma (RRMM). In different clinical trials, the overall response rate (ORR) varied from 50% to 100%. Complete remission (CR) rate varied from 20% to 80%. Here we developed a BCMA CAR-T cell product manufactured via lentiviral vector-mediated transduction of activated T cells to express a second-generation CAR with 4-1BB costimulatory domain and evaluated the efficacy and safety, moreover, dynamics of immune cell subsets using single-cell mass cytometry during treatment were analyzed. Methods Our trial (ChiCTR1800017404) is a phase 1, single-arm, open-label single center study to evaluate the safety and efficacy of autologous BCMA CAR-T treatment for RRMM. Patients were subjected to a lymphodepleting regimen with Flu and Cy prior to CAR-T infusion. BCMA CAR-T cells were administered as a single infusion at a median dose of 3.5 (1 to 6) ×106/kg. MM response assessment was conducted according to the International Uniform Response Criteria. Cytokine-release syndrome (CRS) was graded as Lee DW et al described (Blood.2014;124(2):188-195). Phenotypic analysis of peripheral blood mononuclear cells (PBMCs), frozen BCMA CAR-T aliquots, phenotype and in vivo kinetics of immune cell subsets after CAR-T infusion were performed by single-cell mass cytometry. Results As of the data cut-off date (August 1st, 2019), 33 patients, median age 62.5 (49 to 75) years old were infused with BCMA CAR-T cells. The median observation period is 8.0 (0.7 to 18) months. ORR was 100% (The patient who died of infection at 20 days after CAR-T infusion were excluded). All the 32 patients achieved MRD negative in bone marrow by flow cytometry in 2 weeks after CAR-T infusion. Partial response (4 PR, 12.1%), VGPR (7 VGPR, 21.2%), and complete response (21 CR, 63.6%) within 12 weeks post CAR-T infusion were achieved. Durable responses from 4 weeks towards the data cut-off date were found in 28/33 patients (84.8%) (Figure 1a). All patients had detectable CAR-T expansion by flow cytometry from Day 3 post CAR-T cell infusion. The peak CAR-T cell expansion in CD3+ lymphocytes of peripheral blood (PB) varied from 35% to 95% with a median percentage of 82.9%. CRS was reported in all the 33 patients, including 4 with Grade 1, 13 with Grade 2 and 16 with Grade 3. During follow-up, 1-year progression-free survival (PFS) was 70.7% (Figure 1b) and overall survival (OS) was 71.7% (Figure 1c). Multivariate analysis of patients with PR and patients with CR+VGPR revealed that factors including extramedullary infiltration, age>60 years old, high-risk cytogenetics, late stage and CAR-T cell dose were not associated with clinical response (P>0.05). Single-cell mass cytometry revealed that the frequency of total T cells, CD8+ T cells, NK cells and CD3+CD56+ NKT cells in PB was not associated with BCM CAR-T expansion or clinical response. CD8+ Granzyme B+ Ki-67+ CAR-T cells expanded prominently in CRS period. As serum cytokines increased during CRS, non-CAR-T immune cell subsets including PD1+ NK cells, CD8+ Ki-67+ ICOS+ T cells expanded dominantly implying that non-CAR-T cells were also activated after CAR-T treatment. After CRS, stem cell like memory CAR-T cells (CD45RO+ CCR7- CD28- CD95+) remain the main subtype of CAR-T cells (Figure 1d). Conclusions Our data showed BCMA CAR-T treatment is safe with prominent efficacy which can overcome the traditional high-risk factors. We also observed high expansion level and long-term persistence of BCMA CAR-T cells contribute to potent anti-myeloma activity. Stem cell like memory CAR-T cells might be associated with long-term persistence of BCMA CAR-T cells. These initial data provide strong evidence to support the further development of this anti-myeloma cellular immunotherapy. Figure 1. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3011-3011 ◽  
Author(s):  
Rebecca H Kim ◽  
Gabriela Plesa ◽  
Whitney Gladney ◽  
Irina Kulikovskaya ◽  
Bruce L Levine ◽  
...  

3011 Background: CAR T cells have produced remarkable responses in heme malignancies, but efficacy in solid cancers is limited. Poor in vivo persistence and heterogeneous expression of the CAR target on tumors are potential barriers to the success of CAR T cell therapy. However, even with transient persistence, CAR T cells may elicit a “vaccine” effect by inducing cancer cell death and subsequent release of tumor antigens that could stimulate tumor-specific T cell activity. Methods: 6 pts with pancreatic ductal adenocarcinoma (PDAC) received repeated 3x per week intravenous (iv) infusions of mRNA-transfected mesothelin-redirected CAR T cells (CARTmeso). Pts with PDAC (n = 5), ovarian carcinoma (n = 5), and mesothelioma (n = 5) received iv infusion of lentiviral-transduced (lenti) CARTmeso with or without cyclophosphamide (Cy) preconditioning. Peripheral blood samples were collected from pts at baseline and defined time points after treatment. Genomic DNA from these samples or from pre-infused CAR T cell product was used for deep sequencing of the TCRbeta chain using the ImmunoSEQ platform. A TCRbeta clone was considered to have expanded from baseline to defined time points after treatment if it showed a two-fold change from baseline and met statistical significance by Fisher’s exact test (p < 0.05). Results: mRNA CARTmeso cells persisted in vivo for < 24 hrs. Unexpectedly, therapy induced clonal T cell expansion detected in the blood by day 14 in all 6 pts. Expanded clones underwent contraction by day 28 in 3 pts. In one pt, peripherally expanded clones were also detected in a tumor biopsy, but without significant intratumoral clonal expansion. Lenti CARTmeso therapy also induced peripheral expansion of T cell clones both present and not present in the infused CAR T cell product. However, with Cy preconditioning, clonal expansion seen after lenti CARTmeso therapy was predominately restricted to clones detected in the CAR T cell product. Conclusions: In pts with advanced solid cancers, CARTmeso stimulates clonal expansion of endogenous T cells, which is lost with Cy conditioning. Findings suggest that CAR T cells may elicit a “vaccine” effect with potential therapeutic implications.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 3035-3035
Author(s):  
Rebecca Alice Gardner ◽  
Colleen Annesley ◽  
Ashley Wilson ◽  
Corinne Summers ◽  
Prabha Narayanaswamy, ◽  
...  

3035 Background: Loss of CD19 expression is a major cause of limited durable B-ALL remission following CD19 CAR T cells, which might be overcome by utilization of dual CD19xCD22 CAR T cell targeting. Methods: A Phase I trial (NCT03330691) of SCRI-CAR19x22 was developed using dual transduction of lentiviral vectors encoding for either a CD19- or CD22-specific CAR T cell construct, both with 4-1BB co-stimulation. Manufacturing was performed in a closed G-Rex system with IL-7, IL-15 and IL-21. After lymphodepletion, CAR T cells were infused at 1 or 3 X 106 CAR T cells/kg dose levels. Leukemic response and CAR T cell persistence were evaluated by flow cytometry. Results: Products were successfully manufactured in all 28 enrolled subjects with 7.92 average days in culture (range of 7-11 days) and consisted of an average CD8:CD4 ratio of 3.09 (range 0.19 to 8.9). The cellular product CAR composition was 29% CD19, 31% CD22 and 39% CD19 and CD22 targeting. 13 subjects had prior exposure to CD19 or CD22 targeting therapies with diverse expression of CD19 and CD22 on the leukemic blasts. No dose limiting toxicities occurred in the 27 infused subjects. The recommended phase 2 dose is 3 x 106 CAR+ cells/kg. CRS was present in 80% of subjects, with 85% of CRS being grade 2 or less, and a peak grade of 3 (n = 3). Mild neurotoxicity occurred in 38%, with a single grade 3 event. 84.6% obtained a CR, of which 95% were MRD negative. Of the 4 subjects who did not achieved a CR, 2 had a pre-existing CD19 negative population and one had previously received CAR T cells and rejected SCRI-CAR19x22. There have been 4 relapses with varying CD19 and CD22 expression as follows: 1 CD19-CD22-, 1 CD19+CD22+, and 2 CD19-CD22+. The in vivo engraftment of CAR T cells peaked most frequently between day +7 and +14 and was predominated by the CD19 CAR+ T cells. Conclusions: We demonstrate manufacturing feasibility and safety of SCRI-CAR19x22. While initial efficacy is demonstrated, CD22 activity is poor due to limited expansion of the CD22 CAR-containing components and subjects with pre-existing CD19 negative leukemia fared poorly. Development of a revised CD22 CAR that exhibits a reduction tonic signaling is underway, with plans to explore the new construct in the context of a dual-targeting CD19xCD22 CAR T cell product. Clinical trial information: NCT03330691 .


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 7532-7532
Author(s):  
Jordan Gauthier ◽  
Aisling Cearley ◽  
Paula Perkins ◽  
Angela Kirk ◽  
Mazyar Shadman ◽  
...  

7532 Background: CD19-targeted chimeric antigen receptor-engineered (CD19 CAR) T cells achieve high response rates in patients (pts) with relapsed or refractory (R/R) aggressive B-cell non-Hodgkin lymphoma (NHL), but are limited by cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Pivotal trial data suggested distinct toxicity risks across CD19 CAR T-cell products, but differences in pt and disease characteristics may have confounded these observations. Thus, we assessed the independent impact of 3 CD19 CAR T-cell products (axicabtagene ciloleucel[axicel], tisagenlecleucel [tisacel], and JCAR014) on CRS and ICANS severity in 136 pts with R/R aggressive NHL. Methods: We retrospectively analyzed aggressive NHL pts treated at our institutions with cyclophosphamide and fludarabine lymphodepletion (LD) followed by CD19 CAR T-cell therapy. Axicel and tisacel pts were treated off trial using commercial products. JCAR014 (defined-composition 4-1BB-costimulated CD19 CAR T cells) was administered in all pts at the dose of 2x106/kg on a phase I/II clinical trial (NCT01865617). CRS and ICANS were graded according to the ASTCT criteria and CTCAE 4.03, respectively. We used multivariable proportional odds logistic regression to model CRS and ICANS grade. Results: The CAR T-cell product was axicel, tisacel, or JCAR014 in 50%, 28%, and 22% of pts, respectively. Compared to axicel pts, we observed higher preLD LDH levels in tisacel and JCAR014 pts, and lower preLD albumin with tisacel (p < 0.001) with comparable age and hematopoietic cell transplantation comorbidity (HCT-CI) indexes across CAR T-cell products. Higher day-28 overall response rate by Lugano criteria was observed after axicel (71%) compared to tisacel (56%) and JCAR014 (53%). Adjusting for age, HCT-CI, preLD LDH, preLD albumin, CAR T-cell product type was associated with CRS severity (tisacel versus [vs] axicel, OR = 0.45, p = 0.05; JCAR014 vs axicel, OR = 0.29, p = 0.005;). Age had limited or no impact on CRS severity (OR 95%CI, 0.97-1.02), while the effect of HCT-CI was undetermined (OR 95%CI, 0.85-1.27). In a multivariable model including the same covariates as above, CAR T-cell product type (tisacel vs axicel, OR =.14, p <.001; JCAR014 vs axicel, OR = 0.31, p = 0.009), preLD LDH (OR, 3.96 per log10 increase; p = 0.04) and age (OR per 10-year increase, 1.32; p =.06) were associated with ICANS severity. Interaction effect testing suggested effect modification of age by the CAR T-cell product type (tisacel/JCAR014 versus axicel, p = 0.06); using a multivariable model including this interaction term, the predicted probabilities of grade ≥3 ICANS in a 70 year-old after axicel, tisacel, and JCAR014 were 40%, 6%, and 8%, respectively. Conclusions: CAR T-cell product type independently impacts CRS and ICANS severity in NHL pts. Our findings provide key insights to guide patient and CAR T-cell product selection.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alyssa Sheih ◽  
Valentin Voillet ◽  
Laïla-Aïcha Hanafi ◽  
Hannah A. DeBerg ◽  
Masanao Yajima ◽  
...  

AbstractChimeric antigen receptor (CAR) T-cell therapy has produced remarkable anti-tumor responses in patients with B-cell malignancies. However, clonal kinetics and transcriptional programs that regulate the fate of CAR-T cells after infusion remain poorly understood. Here we perform TCRB sequencing, integration site analysis, and single-cell RNA sequencing (scRNA-seq) to profile CD8+ CAR-T cells from infusion products (IPs) and blood of patients undergoing CD19 CAR-T immunotherapy. TCRB sequencing shows that clonal diversity of CAR-T cells is highest in the IPs and declines following infusion. We observe clones that display distinct patterns of clonal kinetics, making variable contributions to the CAR-T cell pool after infusion. Although integration site does not appear to be a key driver of clonal kinetics, scRNA-seq demonstrates that clones that expand after infusion mainly originate from infused clusters with higher expression of cytotoxicity and proliferation genes. Thus, we uncover transcriptional programs associated with CAR-T cell behavior after infusion.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5387-5387 ◽  
Author(s):  
Wen Wang ◽  
Ming Hao ◽  
Yin Cheng ◽  
Juan Gao ◽  
Su Yang ◽  
...  

Abstract Background: JWCAR029 is the first IND approved CD19-targeted CAR T cell product by China National Drug Administration (CNDA) containing 4-1BB as the co-stimulatory factor with highly reproducible process and quality control that allows flat dose of CAR T cell infusion. To date, a total of 22 lots have been manufactured and 18 subjects have been infused in the ongoing multicenter, Phase 1 trial (NCT03344367 and NCT03355859) evaluating the safety and efficacy of JWCAR029 in adult relapsed or refractory B-cell Non-Hodgkin lymphoma patients. The process and quality control strategy for JWCAR029 contributes to the low variability in drug product quality attributes. Methods: Manufacturing of JWCAR029 begins with patient derived autologous T cells obtain via apheresis. JWCAR029 drug products were analyzed for viability, potency, subtype of T cells, copy numbers of lentiviral vector, and cell health related attributes using cellometer related bioassays, flow cytometry, and real-time quantitative polymerase chain reaction system (qPCR), respectively. Results: Process and quality of JWCAR029 started with an automated wash and T cell purification that results in pure CD3+ populations (median 99.56%, Inter Quartile Range [IQR] 99.22-99.86%). CD3+ T cells were transduced with lentiviral vector expressing a CD19-directed CAR with a 4-1 BB/CD3ζ endodomain. CAR+ T cells were cultured to a target cell dose and then formulated / cryopreserved for infusion. To reduce between-lot variance, the cryopreserved drug product (CDP) was packaged at fixed volume with a tight range of viable cell concentrations (CD3+: median 40.25 × 10^6 cells/mL, IQR 31.10-69.13 × 10^6 cells/mL, N=22) and CD3+CAR+ cell concentrations (median 27.25 × 10^6 cells/mL, IQR 23.57-33.10 × 10^6 cells/mL, N=22). JWCAR029 does not use a fixed ratio of CD4+CAR+ cells/CD8+CAR+ cells in the final CDP (median 1.18, IQR 0.70-1.95, N=22). In the ongoing, multicenter, single arm, open-label and dose escalation Phase 1 trial, JWCAR029 was administered as a flat dose at dose level 1 (DL1) of 2.5 × 10^7 CAR+ T cells (6 subjects), at dose level 2 (DL2) of 5.0 × 10^7 CAR+ T cells (9 subjects), or dose level 3 (DL3) of 1.0 × 10^8 CAR+ T cells (3 subjects). After infusion, stable expansion of CD4+ and CD8+ CAR+ T cells were observed and peak value was appeared at day 11 to day 15 after administration. Low occurrence rate and manageable cytokine release syndrome (CRS) and neurotoxicity (NT) with high complete response (CR) rate were observed with emerging dose: response relationship. Detailed PK, clinical safety, and efficacy data of JWCAR029 will be presented separately. Conclusion: In order to employ standardized and high quality cell therapy methods in a Chinese multi-center trial, JWCAR029 was developed to provide a CD19-directed 4-1BB CAR T cell product with highly controlled manufacturing and quality processes enables administration in adult relapsed or refractory B-cell Non-Hodgkin lymphoma subjects. These control strategies in manufacturing and quality processes facilitated to the low rates of CRS and NT. Disclosures Hao: JW Therapeutics: Employment, Equity Ownership. Cheng:JW Therapeutics: Employment, Equity Ownership. Gao:JW Therapeutics: Employment, Equity Ownership. Liu:JW Therapeutics: Employment, Equity Ownership. Lam:JW Therapeutics: Consultancy. Yao:JW Therapeutics: Employment, Equity Ownership; WuXi AppTec: Employment, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 7501-7501 ◽  
Author(s):  
Tanya Siddiqi ◽  
Kathleen Anne Dorritie ◽  
Jacob Drobnyk Soumerai ◽  
Deborah Marie Stephens ◽  
Jason A Dubovsky ◽  
...  

7501 Background: Eradication of MRD in CLL patients may be necessary for deep and durable responses. We assessed safety, pharmacokinetics, and efficacy of liso-cel, an investigational, anti-CD19 CAR T cell product administered as a defined composition of CD4+/CD8+ CAR T cells, in the ongoing phase 1/2 TRANSCEND CLL 004 study. Methods: Eligible pts had CLL/SLL, received ≥2 prior lines of therapy (including Bruton’s tyrosine kinase inhibitors [BTKi] unless medically contraindicated), and had ECOG PS ≤1. Post lymphodepleting chemotherapy, pts received liso-cel infusion at either dose level (DL)1 = 50 × 106 or DL2 = 100 × 106 total CAR+ T cells. Patients were monitored for dose-limiting toxicities (DLTs). Response was assessed by iwCLL 2008 criteria. MRD was assessed by flow cytometry in blood (10−4) and by NGS in bone marrow (BM; 10−6). Results: At data cutoff, 16 pts received liso-cel: DL1, n = 6; DL2, n = 10. 75% of pts had high-risk features ( TP53 mutation, complex karyotype, or del17p); 100% had prior ibrutinib and 50% had prior venetoclax. Median (range) number of prior lines of therapy was 4.5 (2‒11). There was 1 DLT of grade (G) 4 hypertension (DL2). The most common G3/4 treatment-emergent adverse events were cytopenias (thrombocytopenia, 75%; anemia, 69%; neutropenia, 63%; leukopenia, 56%). 1 pt had G3 cytokine release syndrome (CRS); 3 pts had G3 neurological events (NE). Best overall response rate (ORR) in 15 evaluable pts was 87% (13/15). 7 pts (47%) achieved complete remission with/without complete blood count recovery (CR/CRi). ORR at 6 mo was 83% (5/6). 10/15 pts (67%) achieved undetectable MRD (uMRD) in blood by day 30 and in 7/8 pts (88%) in BM. MRD-negative CRs were seen in patients who had failed both BTKi and venetoclax. Median time to peak blood CAR+ T cell level was 16 days (4‒30). Conclusions: In this study of heavily pretreated pts with standard- and high-risk CLL/SLL and previous ibrutinib treatment, liso-cel-related toxicities (ie, CRS and NEs), were manageable. Pts rapidly achieved CR/CRi and uMRD. Additional follow-up will be presented. Clinical trial information: NCT03331198.


2021 ◽  
Vol 20 (2) ◽  
pp. 30-38
Author(s):  
O. V. Aleinikova ◽  
A. A. Migas ◽  
E. A. Stolyarova ◽  
A. V. Punko ◽  
L. V. Movchan ◽  
...  

The results of treatment of recurrent/refractory acute lymphoblastic leukemia (ALL) with both standard and high-dose chemotherapy are unsatisfactory and require the development of new therapeutic options. The use of immunotherapy approaches opens up new perspectives for patients whose cytotoxic chemotherapy was ineffctive or intolerable. This article describes the experience of using CD19 CAR-T cells manufactured at the Republican Scientifi and Practical Center for Pediatric Oncology, Hematology and Immunology after lymphodepletion with fldarabine and cyclophosphamide in two patients over 18 years of age with refractory relapse of ALL. Other possibilities of conservative treatment for these patients have been exhausted. The study was approved by the Independent Ethics Committee and the Scientifi Council of the Belarusian Research Center for Pediatric Oncology, Hematology and Immunology (Republic of Belarus). The chimeric 2nd generation receptor was constructed from the anti-CD19 scFv antibody fragment, the CD28 transmembrane domain, signaling domains of the 4-1BB and CD3z proteins, and transduced into T-lymphocytes as part of the pWPXL lentiviral vector. The cell product was obtained by separation and separate processing of CD4 and CD8 lymphocytes in the presence of IL-7 and IL-15. The subpopulation composition of the resulting CAR-T cell product and the expression of immune checkpoints were assessed. The results obtained indicate a high antileukemic activity of the obtained CAR-T cells. Monitoring of CAR-T cells' persistence, the level of minimal residual disease, and the spectrum of inflmmatory cytokines in the blood was performed. Both patients responded to CAR-T therapy by lowering their blast cell levels. Treatment was accompanied by a cytokine release syndrome controlled by a recombinant monoclonal antibody to the human IL-6 receptor, tocilizumab. The developed and replicated laboratory-derived CAR-T cell technology can be used to treat patients with severe relapsed/refractory B-line ALL as rescue therapy and provide additional chances for their cure.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3243-3243
Author(s):  
Graham Lilley ◽  
Alden Ladd ◽  
Daniel Cossette ◽  
Laura Viggiano ◽  
Gregory Hopkins ◽  
...  

Abstract T cells engineered with chimeric antigen receptors (CAR) specific to CD19 have caused rapid and durable clinical responses in ~90% of patients with acute lymphoblastic leukemia. These data support the development of additional CAR T cell products for the treatment of other hematological malignancies. Recently, B cell maturation antigen (BCMA) expression has been proposed as a marker for identification of malignant plasma cells in patients with multiple myeloma (MM). Nearly all MM and some non-Hodgkin's lymphoma tumor cells express BCMA, while normal tissue expression is restricted to plasma cells and a subset of mature B cells. Therefore, BCMA is an attractive CAR T cell target to treat patients with MM and some B cell lymphomas. To this end, using lentiviral vector technology, we successfully generated CAR T cells specific to BCMA that exhibit potent anti-tumor activity to both multiple myeloma and Burkitt's lymphoma in animal models. Manufacture of CAR T cells for individual patient treatment requires the establishment of a robust and reproducible process - since variability in manufacturing could impact the potency of each cell product. To begin to understand the parameters of the manufacturing process that might contribute to the activity of the final product, we first tested the impact of lentiviral vector (LVV) multiplicity of infection (MOI) on CAR T cell phenotype and function. Using a broad range of MOIs (0.625 to 40) across multiple independent PBMC donors we observed no differences in population doubling or cell size throughout the ~10 day manufacturing process, irrespective of the MOI used. As expected, the number of anti-BCMA CAR expressing cells, the level of CAR expression per cell and the average vector copy number (VCN) in the cell product increased proportionally with MOI. Similarly, T cell function, as determined by an IFNg cytokine release assay in response to BCMA-expressing K562 target cells, was also correlated with the LVV MOI. Notably, increased IFNg expression was readily observable at MOIs as low as 1.25 and reached a plateau with T cells generated using an MOI of 20 or more - highlighting the sensitivity of this functional assay. Analogous data demonstrating MOI dependent in vitro killing activity were obtained using a BCMA-expressing tumor cell cytotoxicity assay. Varying the LVV MOI used during transduction simultaneously alters both the amount of anti-BCMA CAR molecules expressed per cell as well as the number of T cells in the cell product that express anti-BCMA CAR. To evaluate each variable in isolation we generated T cell products containing the same frequency of anti-BCMA CAR T cells (26 ± 4% CAR+ T cells) but different levels of anti-BCMA expression per cell by diluting T cell products made with MOIs from 5 to 40 with donor-matched untransduced cells. While these populations had markedly different levels of CAR surface expression per cell (based on anti-BCMA CAR MFI levels measured by flow cytometry) both low and high expressing anti-BCMA CAR T cell products exhibited identical levels of cytotoxicity against BCMA-expressing tumor cells. These data suggest it is the number of CAR expressing cells that is the critical driver of higher functional activity (perhaps due to the efficiency of LVV mediated anti-BCMA CAR expression per transduced cell). Finally, using this information the variability in manufacturing of anti-BCMA CAR T cells was evaluated across 11 independent normal PBMC donors. All 11 products demonstrated very similar properties with respect to cell growth (population doublings, cell volume), and VCN. Importantly, using our standard MOI we obtained a consistent and high level of anti-BCMA CAR expressing T cells that resulted in robust IFNg cytokine release when co-cultured with BCMA-expression cells. Together, our data highlight the frequency of anti-BCMA CAR T cells per cell product as a key parameter for anti-tumor activity in vitro. Moreover, these data suggest that our LVV driven T cell engineering process can reproducibly generate robust anti-BCMA CAR expressing T cell products in a donor independent manner. A phase I clinical trial to evaluate this technology as a cell-based gene therapy for MM is under development. Disclosures Lilley: bluebird bio, Inc: Employment, Equity Ownership. Ladd:bluebird bio, Inc: Employment, Equity Ownership. Cossette:bluebird bio, Inc: Employment, Equity Ownership. Viggiano:bluebird bio, Inc: Employment, Equity Ownership. Hopkins:bluebird bio, Inc: Employment, Equity Ownership. Evans:bluebird bio, Inc: Employment, Equity Ownership. Li:bluebird bio, Inc: Employment, Equity Ownership. Latimer:bluebird bio: Employment, Equity Ownership. Miller:bluebird bio: Employment, Equity Ownership. Kuczewski:bluebird bio: Employment, Equity Ownership. Bakeman:bluebird bio, Inc: Employment, Equity Ownership. MacLeod:bluebird bio, Inc: Employment, Equity Ownership. Friedman:bluebird bio: Employment, Equity Ownership. Maier:bluebird bio, Inc: Employment, Equity Ownership. Paglia:bluebird bio, Inc: Employment, Equity Ownership. Morgan:bluebird bio: Employment, Equity Ownership. Angelino:bluebird bio, Inc: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document