scholarly journals Evaluation of Vancomycin Use in Late-Onset Neonatal Sepsis Using the Area Under the Concentration–Time Curve to the Minimum Inhibitory Concentration ≥400 Target

2015 ◽  
Vol 37 (6) ◽  
pp. 756-765 ◽  
Author(s):  
Jiraganya Bhongsatiern (JJ) ◽  
Chris Stockmann ◽  
Jessica K. Roberts ◽  
Tian Yu ◽  
Kent E. Korgenski ◽  
...  
2009 ◽  
Vol 44 (9) ◽  
pp. 751-765 ◽  
Author(s):  
C. Andrew Deryke ◽  
Donald P. Alexander

Because of its activity against multidrug resistant gram-positive organisms, vancomycin is one of the antimicrobials most utilized in health care systems worldwide. Despite its widespread use, application of the pharmacodynamic principles governing vancomycin efficacy are not frequently considered in contemporary clinical practice. Although the vancomycin trough serum concentration has been used historically to assess the adequacy of a prescribed dose, data validating that this practice leads to improved patient outcomes do not exist. Alternatively, both in vitro and clinical outcomes data demonstrate improved results when an area under the concentration-time curve/minimum inhibitory concentration (AUC/MIC) of 400 mcg•h/mL or greater is achieved. This article describes the process through which individualized vancomycin dosing regimens targeting an AUC/MIC of 400 mcg•h/mL or greater, rather than trough serum concentration, at the beside can be derived. The equations, methodology, thought processes, benefits, potential pitfalls, and practical applicability of this method are specifically examined. Obtaining the actual MIC value—not an interpretation—from the microbiology laboratory and/or the MIC distribution for Staphylococcus aureus within one's own institution is essential for implementation of this method. Although vancomycin dosing recommendations suggested in contemporary practice guidelines are likely adequate for most patients, using the methods described here may lead to improved clinical outcomes for nonstandard conditions in patients who are critically ill and would benefit from an individualized dosing approach.


2021 ◽  
Vol 1 (S1) ◽  
pp. s31-s31
Author(s):  
Leslie Chiang ◽  
Alice Pong ◽  
John Bradley ◽  
Paige Anderson ◽  
William Murray

Background: Vancomycin is the treatment of choice for invasive methicillin-resistant Staphylococcus aureus (MRSA) infections. Previous guidelines issued by the Infectious Diseases Society of America (IDSA) recommended targeting vancomycin serum trough concentrations of 15–20 mg/L; however, troughs <15 mg/L are also associated with increased odds of renal toxicity. To minimize toxicity, recently updated ASHP/IDSA/PIDS vancomycin dosing guidelines recommend the use of an area under the vancomycin concentration-time curve divided by the minimum inhibitory concentration (AUC/MIC) pharmacodynamic index to measure vancomycin exposure, with an AUC/MIC ratio >400 correlating with clinical efficacy. However, data on vancomycin therapeutic drug monitoring (TDM) in children are limited. Our institutional practice since January 2009 has been to use AUC/MIC, rather than serum trough concentrations, to guide vancomycin dosing. In this study, we describe clinical outcomes in vancomycin-treated children with invasive MRSA infections using this dosing method. Methods: We performed a retrospective chart review of children hospitalized with invasive MRSA infections between 2006 and 2019 at Rady Children’s Hospital in San Diego, California. Clinical, microbiologic, and pharmacologic data including the site of MRSA infection, clinical failure or cure, occurrence of acute kidney injury (AKI), vancomycin MIC, vancomycin AUC, and serum trough concentrations were collected. Results: In total, 61 invasive MRSA cases were reviewed: 20 were admitted January 2016 through December 2008, and 41 were admitted January 2009 through June 2019 (Figure 1). Most patients did not have medical comorbidities. The most common types of infections were primary bacteremia (34%) and osteomyelitis (32%). Of 61 children, 50 (82%) had positive clinical outcomes regardless of vancomycin dosing method. Of 20 patients, 8 (40%) admitted prior to January 2009 developed AKI, compared with 5 (12%) of 41 patients admitted after January 2009. Conclusions: In our retrospective review, most patients had clinically successful outcomes regardless of which dosing strategy was used. We found higher rates of renal toxicity in patients who were admitted prior to 2009, with TDM based on measuring peak and trough concentrations, compared with those using AUC/MIC for TDM. Our findings suggest that AUC/MIC TDM for invasive MRSA infections may be associated with lower rates of renal toxicity.Funding: NoDisclosures: None


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 105
Author(s):  
Kun Mi ◽  
Da Sun ◽  
Mei Li ◽  
Haihong Hao ◽  
Kaixiang Zhou ◽  
...  

Haemophilus parasuis can cause high morbidity and mortality in swine. Cefquinome possesses excellent antibacterial activity against pathogens causing diseases of the respiratory tract. This study aimed to establish the clinical breakpoint (CBP) of cefquinome against H. parasuis and to monitor the resistance change. Referring to the minimum inhibitory concentration (MIC) distribution of cefquinome against 131 H. parasuis isolates, the MIC50 and MIC90 were determined to be 0.125 and 1 μg/mL, respectively. And the epidemiological cutoff (ECOFF) value was 1 μg/mL. HPS42 was selected as a representative strain for the pharmacodynamic (PD) experiment, pharmacokinetic (PK) experiment and clinical experiments. The PK/PD index values, area under concentration-time curve (AUC)/MIC, of the bacteriostatic, bactericidal, and bacterial elimination effects were 23, 41, and 51 h, respectively. The PK/PD cutoff was calculated as 0.125 μg/mL by Monte Carlo simulation (MCS), and the clinical cutoff was 0.25−4 μg/mL by WindoW. Combing these three values, the CBP of cefquinome against H. parasuis was found to be 1 μg/mL. In conclusion, this was the first study to integrate various cutoffs to establish the CBP in the laboratory. It is helpful to distinguish wild type H. parasuis and reduce the probability of treatment failure.


2012 ◽  
Vol 116 (5) ◽  
pp. 1124-1133 ◽  
Author(s):  
Bruce Hullett ◽  
Sam Salman ◽  
Sean J. O'Halloran ◽  
Deborah Peirce ◽  
Kylie Davies ◽  
...  

Background Parecoxib is a cyclooxygenase-2 selective inhibitor used in management of postoperative pain in adults. This study aimed to provide pediatric pharmacokinetic information for parecoxib and its active metabolite valdecoxib. Methods Thirty-eight children undergoing surgery received parecoxib (1 mg/kg IV to a maximum of 40 mg) at induction of anesthesia, and plasma samples were collected for drug measurement. Population pharmacokinetic parameters were estimated using nonlinear mixed effects modeling. Area under the valdecoxib concentration-time curve and time above cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib were simulated. Results A three-compartment model best represented parecoxib disposition, whereas one compartment was adequate for valdecoxib. Age was linearly correlated with parecoxib clearance (5.0% increase/yr). There was a sigmoid relationship between age and both valdecoxib clearance and distribution volume. Time to 50% maturation was 87 weeks postmenstrual age for both. In simulations using allometric-based doses the 90% prediction interval of valdecoxib concentration-time curve in children 2-12.7 yr included the mean for adults given 40 mg parecoxib IV. Simulated free valdecoxib plasma concentration remained above the in vitro 50% inhibitory concentrations for more than 12 h. In children younger than 2 yr, a dose reduction is likely required due to ongoing metabolic maturation. Conclusions The final pharmacokinetic model gave a robust representation of parecoxib and valdecoxib disposition. Area under the valdecoxib concentration-time curve was similar to that in adults (40 mg), and simulated free valdecoxib concentration was above the cyclooxygenase-2 in vitro 50% inhibitory concentration for free valdecoxib for at least 12 h.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ping Yang ◽  
Wei Liu ◽  
Jiajia Zheng ◽  
Yuanyuan Zhang ◽  
Li Yang ◽  
...  

Therapeutic drug monitoring is considered to be an effective tool for the individualized use of voriconazole. However, drug concentration measurement alone doesn’t take into account the susceptibility of the infecting microorganisms to the drug. Linking pharmacodynamic data with the pharmacokinetic profile of individuals is expected to be an effective method to predict the probability of a certain therapeutic outcome. The objective of this study was to individualize voriconazole regimens by integrating individual pharmacokinetic parameters and pathogen susceptibility data through Monte Carlo simulations The individual pharmacokinetic parameters of 35 hospitalized patients who received voriconazole were calculated based on a validated population pharmacokinetic model. The area under the concentration-time curve for free drug/minimal inhibitory concentration (fAUCss/MIC) &gt; 25 was selected as the pharmacokinetic/pharmacodynamic (PK/PD) parameter predicting the efficacy of voriconazole. The cumulative fraction of response (CFR) of the target value was assessed. To verify this conclusion, a logistic regression analysis was used to explore the relationship between actual clinical efficiency and the CFR value. For the 35 patients, the area under the free drug concentration-time curve (fAUCss) was calculated to be 34.90 ± 21.67 mgh/L. According to the dualistic logistic regression analysis, the minimal inhibitory concentration (MIC) value of different kinds of fungi had a great influence on the effectiveness of clinical treatment. It also showed that the actual clinical efficacy and the CFR value of fAUCss/MIC had a high degree of consistency. The results suggest that it is feasible to individualize voriconazole dosing and predict clinical outcomes through the integration of data on pharmacokinetics and antifungal susceptibility.


2021 ◽  
Vol 9 (10) ◽  
pp. 2068
Author(s):  
Ruth Van Daele ◽  
Joost Wauters ◽  
Katrien Lagrou ◽  
Raphaël Denooz ◽  
Marie-Pierre Hayette ◽  
...  

Background: Fluconazole is one of the oldest antifungal drugs. Previous studies have raised concerns considering variability in exposure and inadequate target attainment in critically ill patients. The current study aims to define variability and target attainment for fluconazole exposure in a large group of critically ill patients. Methods: In this pharmacokinetic study, daily plasma trough samples and, if possible, 24 h urine samples were collected to determine fluconazole concentration. A minimum target trough concentration of 10–15 mg/L was selected, corresponding to a free area under the concentration–time curve above the minimum inhibitory concentration (fAUC/MIC) of at least 100 for an MIC of 4 mg/L. Covariates that significantly influenced fluconazole exposure were identified. Results: In total, 288 plasma samples from 43 patients, with a median age of 66 years, were included. The median fluconazole trough concentration was 22.9 mg/L. A notable component of the measured concentrations was below the target trough concentrations (13% <10 mg/L and 27% <15 mg/L). The intra- and intersubject variability were 28.3% and 50.5%, respectively. The main covariates determining fluconazole exposure were the administered dose (mg/kg), augmented renal clearance, and renal replacement therapy. Conclusions: Fluconazole trough concentrations are variable in critically ill patients and a considerable number of these concentrations was below the predefined target trough concentrations.


Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1238
Author(s):  
Sara T. Elazab ◽  
Nahla S. Elshater ◽  
Yousreya H. Hashem ◽  
Nayera M. Al-Atfeehy ◽  
Eon-Bee Lee ◽  
...  

This research aimed to assess the pharmacokinetics/pharmacodynamics (PK/PD) and tissue residues of spiramycin in chickens. The PK of spiramycin were determined in 12 chickens using a parallel study design in which each group of chickens (n = 6) received a single dose of spiramycin at 17 mg/kg intravenously (IV) or orally. Plasma samples were collected at assigned times for up to 48 h to measure spiramycin concentrations. Additionally, a tissue depletion study was performed in 42 chickens receiving spiramycin at 17 mg/kg/day orally for 7 days. The area under the plasma concentration–time curve values were 29.94 ± 4.74 and 23.11 ± 1.83 µg*h/mL after IV and oral administrations, respectively. The oral bioavailability was 77.18%. The computed withdrawal periods of spiramycin were 11, 10, and 7 days for liver, muscle, and skin and fat, respectively. The minimum inhibitory concentration for spiramycin against Mycoplasma synoviae (M. synoviae) strain 1853 was 0.0625 µg/mL. Using the PK/PD integration, the appropriate oral dose of spiramycin against M. synoviae was estimated to be 15.6 mg/kg. Thus, we recommend an oral dose of 15.6 mg spiramycin/kg against M. synoviae in chickens and a withdrawal period of 11 days following oral treatment with 17 mg spiramycin/kg/day for 7 days.


Sign in / Sign up

Export Citation Format

Share Document