Effects of dietary equol on body weight gain, intra-abdominal fat accumulation, plasma lipids, and glucose tolerance in ovariectomized Sprague-Dawley rats

Author(s):  
Dominik Rachoń ◽  
Tina Vortherms ◽  
Dana Seidlovä-Wuttke ◽  
Wolfgang Wuttke
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saira Tanweer ◽  
Tariq Mehmood ◽  
Saadia Zainab ◽  
Zulfiqar Ahmad ◽  
Muhammad Ammar Khan ◽  
...  

Purpose Innovative health-promoting approaches of the era have verified phytoceutics as one of the prime therapeutic tools to alleviate numerous health-related ailments. The purpose of this paper is to probe the nutraceutic potential of ginger flowers and leaves against hyperglycemia. Design/methodology/approach The aqueous extracts of ginger flowers and leaves were observed on Sprague Dawley rats for 8 weeks. Two parallel studies were carried out based on dietary regimes: control and hyperglycemic diets. At the end of the experimental modus, the overnight fed rats were killed to determine the concentration of glucose and insulin in serum. The insulin resistance and insulin secretions were also calculated by formulae by considering fasting glucose and fasting insulin concentrations. Furthermore, the feed and drink intakes, body weight gain and hematological analysis were also carried out. Findings In streptozotocin-induced hyperglycemic rats, the ginger flowers extract depicted 5.62% reduction; however, ginger leaves extract reduced the glucose concentration up to 7.11% (p = 0.001). Similarly, ginger flowers extract uplifted the insulin concentration up to 3.07%, while, by ginger leaves extract, the insulin value increased to 4.11% (p = 0.002). For the insulin resistance, the ginger flower showed 5.32% decrease; however, the insulin resistance was reduced to 6.48% by ginger leaves (p = 0.014). Moreover, the insulin secretion increased to 18.9% by flower extract and 21.8% by ginger leave extract (p = 0.001). The feed intake and body weight gain increased momentously by the addition of ginger flowers and leaves; however, the drink intake and hematological analysis remained non-significant by the addition of ginger parts. Originality/value Conclusively, it was revealed that leaves have more hypoglycemic potential as compared to flowers.


1998 ◽  
Vol 274 (6) ◽  
pp. E1057-E1066 ◽  
Author(s):  
Jian Wang ◽  
Jesline T. Alexander ◽  
Ping Zheng ◽  
Hi Joon Yu ◽  
Jordan Dourmashkin ◽  
...  

Patterns of eating behavior, body weight gain, and hormone changes were examined in normal-weight albino Sprague-Dawley rats on macronutrient diets. These diets consisted of either three separate jars with pure macronutrients, fat, carbohydrate and protein, from which to choose, or a single diet with different concentrations of fat and carbohydrate. Similar patterns on the choice-diet and single-diet paradigms were observed. During the first 7–10 days on these diets but not subsequently, the rats consuming a fat-rich diet exhibit significant hyperphagia, an increase in both total and fat intake that produces higher body weight gain. Compared with a 10% fat diet, a 30% fat diet is associated with a decline in insulin and corticosterone (CORT) levels, whereas a 60% fat diet produces an increase in circulating glucose. Levels of glucose are positively correlated with fat intake, and together these measures are consistently related to body fat. These relationships are most strongly expressed in rats that consume a fat-rich diet with >30% fat. Whereas insulin levels are also positively related to body fat, CORT is inversely related in these normal-weight subjects. In animals consuming a high-fat diet, a clear separation can be seen between “obesity-prone” (OP) rats with 100% greater body fat than “obesity-resistant” (OR) rats. The OP rats, which consume 15% more total calories, have significantly higher insulin and glucose levels. In animals that consume a diet with >30% fat, it is the OP but not the OR rats that exhibit a positive relation between fat intake, glucose levels, and body fat and reveal an additional association between carbohydrate intake, insulin, and body fat. Thus these rats on macronutrient diets exhibit distinct traits that relate behavior to hormone disturbances and adiposity and distinguish subjects that are prone vs. resistant to obesity.


2003 ◽  
Vol 284 (6) ◽  
pp. R1560-R1566 ◽  
Author(s):  
Amit Varma ◽  
Jing He ◽  
Lisa Weissfeld ◽  
Sherin U. Devaskar

We investigated the effect of repetitive postnatal (2–7 days) intracerebroventricular administration of neuropeptide Y (NPY) on food intake and body weight gain in the 3- to 120-day-old Sprague-Dawley rats. NPY caused a 32% transient increase in body weight gain with elevated circulating insulin concentrations within 24 h. This early intervention led to the persistence of hyperinsulinemia and relative hyperleptinemia with euglycemia in the 120-day-old female alone. This perturbation was associated with 50% suppression in adult female hypothalamic NPY concentrations and a 50–85% decline in NPY immunoreactivity in the paraventricular and arcuate nuclei. This change was paralleled by a ∼20% decline in food intake and body weight gain at 60 and 120 days. However, when exogenous NPY was stereotaxically reinjected into the paraventricular nucleus of the ∼120-day-old adult females who were pretreated with NPY postnatally, an increase in food intake and body weight gain was noted, attesting to no disruption in the NPY end-organ responsivity. We conclude that postnatal intracerebroventricular NPY has long-lasting effects that predetermine the resultant adult phenotype in a sex-specific manner.


2013 ◽  
Vol 110 (12) ◽  
pp. 2186-2193 ◽  
Author(s):  
Anje C. Höper ◽  
Wahida Salma ◽  
Ahmed M. Khalid ◽  
Anne D. Hafstad ◽  
Selene J. Sollie ◽  
...  

The aim of the present study was to investigate the effects of oil extracted from the zooplankton Calanus finmarchicus (Calanus oil) on diet-induced obesity and obesity-related disorders in mice. C57BL/6J mice fed a high-fat diet (HFD, 45 % energy from fat) exhibited increased body weight and abdominal fat accumulation as well as impaired glucose tolerance compared with mice fed a normal chow diet (10 % energy from fat). Supplementing the HFD with 1·5 % (w/w) Calanus oil reduced body-weight gain, abdominal fat accumulation and hepatic steatosis by 16, 27 and 41 %, respectively, and improved glucose tolerance by 16 %. Calanus oil supplementation reduced adipocyte size and increased the mRNA expression of adiponectin in adipose tissue. It also reduced macrophage infiltration by more than 70 %, accompanied by reduced mRNA expression of pro-inflammatory cytokines (TNF-α, IL-6 and monocyte chemotactic protein-1). The effects of Calanus oil were not only preventive, but also therapeutic, as the oil proved to be beneficial, regardless of whether the supplementation was started before or after the onset of obesity and glucose intolerance. Although the present study cannot pinpoint the active component(s) of the oil, there is reason to believe that the n-3 fatty acids EPA and DHA and/or antioxidants are responsible for its beneficial effects. It should be noted that the concentration of n-3 fatty acids in the Calanus oil diet was considerably lower than the concentrations used in similar studies reporting beneficial effects on obesity and obesity-related abnormalities.


Pharmaciana ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Dwi Kurnia Putri ◽  
Iskandarsyah Iskandarsyah ◽  
Effionora Anwar

Endocrinology ◽  
2003 ◽  
Vol 144 (12) ◽  
pp. 5347-5352 ◽  
Author(s):  
Bénédicte Prunet-Marcassus ◽  
Mathieu Desbazeille ◽  
Arnaud Bros ◽  
Katie Louche ◽  
Philippe Delagrange ◽  
...  

2014 ◽  
Vol 52 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Rihua Zhang ◽  
Dongming Su ◽  
Weidong Zhu ◽  
Qiong Huang ◽  
Menglan Liu ◽  
...  

The aim of this study is to determine the effects of E2 on metabolic syndrome and the molecular mechanisms involving S100A16. Ovariectomized (OVX) rat models and mouse embryonic fibroblasts cell models were used. E2 loss in OVX rats induced body weight gain and central abdominal fat accumulation, which were ameliorated by E2 treatment under chow and high-fat diet (HFD) conditions. E2 decreased the expression of the adipocyte marker genes PPARγ, aP2, C/EBPα, and S100A16. E2 inhibited adipogenesis. Overexpression of S100A16 reversed the E2-induced adipogenesis effect. A luciferase assay showed that E2 inhibited the expression of S100A16. E2 treatment decreased body weight gain and central abdominal fat accumulation under both chow and HFD conditions. Also, E2 suppressed adipogenesis by inhibiting S100A16 expression.


2001 ◽  
Vol 131 (10) ◽  
pp. 2722-2731 ◽  
Author(s):  
Sylvia P. Poulos ◽  
Matthew Sisk ◽  
Dorothy B. Hausman ◽  
Michael J. Azain ◽  
Gary J. Hausman

Sign in / Sign up

Export Citation Format

Share Document