scholarly journals Transforming growth factor-β inhibits myocardial PPARγ expression in pressure overload-induced cardiac fibrosis and remodeling in mice

2011 ◽  
pp. 1 ◽  
Author(s):  
Kaizheng Gong ◽  
Yiu-Fai Chen ◽  
Peng Li ◽  
Jason A. Lucas ◽  
Fadi G. Hage ◽  
...  
2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Annina Kelloniemi ◽  
Jani Aro ◽  
Elina Koivisto ◽  
Heikki Ruskoaho ◽  
Jaana Rysä

Objectives: Transforming-growth-factor β-stimulated clone 22 (TSC-22) is a leucine zipper protein expressed in many tissues and possessing various transcription-modulating activities. However, its function in the heart remains largely unknown. The aim of the present study was to characterize the cardiac TSC-22 expression. Methods: Acute pressure overload was accomplished in conscious Sprague-Dawley (SD) rats by intravenous infusion of arginine 8 -vasopressin (AVP, 0.05 μg/kg/min) for 4 hours and subcutaneous infusion of angiotensin II (Ang II, 33 μg/kg/h) with and without Ang II receptor type 1 blocker losartan (400 μg/kg/h) by using osmotic minipumps for 2 weeks. Adenovirus-mediated intramyocardial gene transfer of TSC-22 was performed into left ventricle (LV) of SD rats. Experimental myocardial infarction (MI) was produced by ligation of the left anterior descending coronary artery. Cultured neonatal rat ventricular myocytes (NRVM) were treated with endothelin-1 (ET-1, 100 nM). Results: A significant 1.6-fold increase ( P <0.05) in LV TSC-22 mRNA levels was noted already after 1 hour AVP infusion. Moreover, Ang II infusion markedly upregulated TSC-22 expression, LV mRNA levels being highest at 6 hours (11-fold, P <0.001). Simultaneous infusion of losartan completely abolished Ang II-induced increase in TSC-22 mRNA levels. Adenovirus-mediated gene transfer of TSC-22 into LV resulted a 1.9-fold ( P <0.001) increase in TSC-22 mRNA levels, accompanied by upregulated BNP mRNA levels (1.4-fold, P <0.01). In response to experimental MI, TSC-22 mRNA levels were elevated 4.1-fold ( P <0.001) at 1 day and 1.9-fold ( P <0.05) at 4 weeks. In cultured NRVM, ET-1 treatment increased TSC-22 mRNA levels from 1 h to 24 h, the greatest increase being observed at 12 h (2.7-fold, P <0.001). TSC-22 protein levels were upregulated from 4 h to 24 h with the highest increase at 24 h (4.7-fold, P <0.01). Conclusion: These results indicate that TSC-22 expression is rapidly activated in response to pressure overload, MI and in ET-1 treated cultured NRVM. Moreover, adenovirus-mediated overexpression of TSC-22 mRNA was associated with elevated left ventricular BNP mRNA levels.


2017 ◽  
Vol 292 (12) ◽  
pp. 5124-5124 ◽  
Author(s):  
Raghu S. Nagalingam ◽  
Nagalingam R. Sundaresan ◽  
Mariam Noor ◽  
Mahesh P. Gupta ◽  
R. John Solaro ◽  
...  

2015 ◽  
Vol 117 (suppl_1) ◽  
Author(s):  
Li Li ◽  
Cheng-Lin Zhang ◽  
Dan Wu ◽  
Li-Ling Wu

Background: Cartilage intermediate layer protein-1 (CILP-1), a monomeric extracellular matrix glycoprotein expressed mainly in the middle zones of articular cartilage, interacts directly with transforming growth factor-β1 (TGF-β1). Recent studies showed that CILP-1 was upregulated in the heart tissue following cardiac ischemia reperfusion injury. However, the role of CILP-1 in pathological cardiac remodeling is poorly defined. Aims: To explore the effect of CILP-1 on myocardial interstitial fibrosis and reveal the possible molecular mechanism. Methods and Results: We found that CILP-1 was mainly expressed in mouse cardiac fibroblasts (CFs) by using western blot analysis and immunofluorescence. Myocardial expression of CILP-1 was upregulated in mice subjected to transverse aortic constriction (TAC) for 2, 4, and 8 weeks. AAV-9-mediated delivery of CILP-1 into mice increased the binding of CILP-1 with TGF-β1, attenuated interstitial fibrosis, and improved cardiac function. In cultured adult mouse CFs, CILP-1 overexpression inhibited myofibroblast differentiation and expression of profibrotic molecules induced by TGF-β1. Furthermore, CILP-1 attenuated TGF-β1-induced Smad3 phosphorylation and nuclear translocation. Conclusions: CILP-1 alleviates pressure overload-induced cardiac fibrosis and dysfunction. CILP-1 exerts its anti-fibrotic effect through targeting TGF-β1 signaling. This study will offer a new therapeutic strategy for preventing and treating myocardial interstitial remodeling.


2019 ◽  
Vol 316 (3) ◽  
pp. H596-H608 ◽  
Author(s):  
Rachel C. Childers ◽  
Ian Sunyecz ◽  
T. Aaron West ◽  
Mary J. Cismowski ◽  
Pamela A. Lucchesi ◽  
...  

Hemodynamic load regulates cardiac remodeling. In contrast to pressure overload (increased afterload), hearts subjected to volume overload (VO; preload) undergo a distinct pattern of eccentric remodeling, chamber dilation, and decreased extracellular matrix content. Critical profibrotic roles of cardiac fibroblasts (CFs) in postinfarct remodeling and in response to pressure overload have been well established. Little is known about the CF phenotype in response to VO. The present study characterized the phenotype of primary cultures of CFs isolated from hearts subjected to 4 wk of VO induced by an aortocaval fistula. Compared with CFs isolated from sham hearts, VO CFs displayed a “hypofibrotic” phenotype, characterized by a ~50% decrease in the profibrotic phenotypic markers α-smooth muscle actin, connective tissue growth factor, and collagen type I, despite increased levels of profibrotic transforming growth factor-β1 and an intact canonical transforming growth factor-β signaling pathway. Actin filament dynamics were characterized, which regulate the CF phenotype in response to biomechanical signals. Actin polymerization was determined by the relative amounts of G-actin monomers versus F-actin. Compared with sham CFs, VO CFs displayed ~78% less F-actin and an increased G-actin-to-F-actin ratio (G/F ratio). In sham CFs, treatment with the Rho kinase inhibitor Y-27632 to increase the G/F ratio resulted in recapitulation of the hypofibrotic CF phenotype observed in VO CFs. Conversely, treatment of VO CFs with jasplakinolide to decrease the G/F ratio restored a more profibrotic response (>2.5-fold increase in α-smooth muscle actin, connective tissue growth factor, and collagen type I). NEW & NOTEWORTHY The present study is the first to describe a “hypofibrotic” phenotype of cardiac fibroblasts isolated from a volume overload model. Our results suggest that biomechanical regulation of actin microfilament stability and assembly is a critical mediator of cardiac fibroblast phenotypic modulation.


2015 ◽  
Vol 35 (12) ◽  
pp. 2154-2164 ◽  
Author(s):  
Federica Accornero ◽  
Jop H. van Berlo ◽  
Robert N. Correll ◽  
John W. Elrod ◽  
Michelle A. Sargent ◽  
...  

The matricellular secreted protein connective tissue growth factor (CTGF) is upregulated in response to cardiac injury or with transforming growth factor β (TGF-β) stimulation, where it has been suggested to function as a fibrotic effector. Here we generated transgenic mice with inducible heart-specific CTGF overexpression, mice with heart-specific expression of an activated TGF-β mutant protein, mice with heart-specific deletion ofCtgf, and mice in whichCtgfwas also deleted from fibroblasts in the heart. Remarkably, neither gain nor loss of CTGF in the heart affected cardiac pathology and propensity toward early lethality due to TGF-β overactivation in the heart. Also, neither heart-specificCtgfdeletion nor CTGF overexpression altered cardiac remodeling and function with aging or after multiple acute stress stimuli. Cardiac fibrosis was also unchanged by modulation of CTGF levels in the heart with aging, pressure overload, agonist infusion, or TGF-β overexpression. However, CTGF mildly altered the overall cardiac response to TGF-β when pressure overload stimulation was applied. CTGF has been proposed to function as a critical TGF-β effector in underlying tissue remodeling and fibrosis throughout the body, although our results suggest that CTGF is of minimal importance and is an unlikely therapeutic vantage point for the heart.


Sign in / Sign up

Export Citation Format

Share Document