scholarly journals Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia

Pain ◽  
2020 ◽  
Vol 161 (7) ◽  
pp. 1497-1517 ◽  
Author(s):  
Andi Wangzhou ◽  
Lisa A. McIlvried ◽  
Candler Paige ◽  
Paulino Barragan-Iglesias ◽  
Stephanie Shiers ◽  
...  
Pain ◽  
2018 ◽  
Vol 159 (7) ◽  
pp. 1325-1345 ◽  
Author(s):  
Pradipta Ray ◽  
Andrew Torck ◽  
Lilyana Quigley ◽  
Andi Wangzhou ◽  
Matthew Neiman ◽  
...  

2019 ◽  
Vol 22 (2) ◽  
pp. 250-263 ◽  
Author(s):  
Wuping Sun ◽  
Dongquan Kou ◽  
Zhijian Yu ◽  
Shaomin Yang ◽  
Changyu Jiang ◽  
...  

2017 ◽  
Author(s):  
Pradipta Ray ◽  
Andrew Torck ◽  
Lilyana Quigley ◽  
Andi Wangzhou ◽  
Matthew Neiman ◽  
...  

AbstractMolecular neurobiological insight into human nervous tissues is needed to generate next generation therapeutics for neurological disorders like chronic pain. We obtained human Dorsal Root Ganglia (DRG) samples from organ donors and performed RNA-sequencing (RNA-seq) to study the human DRG (hDRG) transcriptional landscape, systematically comparing it with publicly available data from a variety of human and orthologous mouse tissues, including mouse DRG (mDRG). We characterized the hDRG transcriptional profile in terms of tissue-restricted gene co-expression patterns and putative transcriptional regulators, and formulated an information-theoretic framework to quantify DRG enrichment. Our analyses reveal an hDRG-enriched protein-coding gene set (~140), some of which have not been described in the context of DRG or pain signaling. A majority of these show conserved enrichment in mDRG, and were mined for known drug - gene product interactions. Comparison of hDRG and tibial nerve transcriptomes suggest pervasive mRNA transport of sensory neuronal genes to axons in adult hDRG, with potential implications for mechanistic insight into chronic pain in patients. Relevant gene families and pathways were also analyzed, including transcription factors (TFs), g-protein coupled receptors (GCPRs) and ion channels. We present our work as an online, searchable repository (http://www.utdallas.edu/bbs/painneurosciencelab/DRGtranscriptome), creating a valuable resource for the community. Our analyses provide insight into DRG biology for guiding development of novel therapeutics, and a blueprint for cross-species transcriptomic analyses.SummaryWe generated RNA sequencing data from human DRG samples and comprehensively compared this transcriptome to other human tissues and a matching panel of mouse tissues. Our analysis uncovered functionally enriched genes in the human and mouse DRG with important implications for understanding sensory biology and pain drug discovery.


Author(s):  
V.J. Montpetit ◽  
S. Dancea ◽  
L. Tryphonas ◽  
D.F. Clapin

Very large doses of pyridoxine (vitamin B6) are neurotoxic in humans, selectively affecting the peripheral sensory nerves. We have undertaken a study of the morphological and biochemical aspects of pyridoxine neurotoxicity in an animal model system. Early morphological changes in dorsal root ganglia (DRG) associated with pyridoxine megadoses include proliferation of neurofilaments, ribosomes, rough endoplasmic reticulum, and Golgi complexes. We present in this report evidence of the formation of unique aggregates of microtubules and membranes in the proximal processes of DRG which are induced by high levels of pyridoxine.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 55.2-56
Author(s):  
R. Raoof ◽  
C. Martin ◽  
H. De Visser ◽  
J. Prado ◽  
S. Versteeg ◽  
...  

Background:Pain is a major debilitating symptom of knee osteoarthritis (OA). However, the extent of joint damage in OA does not correlate well with the severity of pain. The mechanisms that govern OA pain are poorly understood. Immune cells infiltrating nervous tissue may contribute to pain maintenance.Objectives:Here we investigated the role of macrophages in the initiation and maintenance of OA pain.Methods:Knee joint damage was induced by an unilateral injection of mono-iodoacetate (MIA) or after application of a groove at the femoral condyles of rats fed on high fat diet. Pain-like behaviors were followed over time using von Frey test and dynamic weight bearing. Joint damage was assessed by histology. Dorsal root ganglia (DRG) infiltrating immune cells were assessed over time using flow cytometry. To deplete monocytes and macrophages, Lysmcrex Csfr1-Stop-DTR were injected intrathecal or systemically with diptheria toxin (DT).Results:Intraarticular monoiodoacetate injection induced OA and signs of persistent pain, such as mechanical hyperalgesia and deficits in weight bearing. The persisting pain-like behaviors were associated with accumulation of F4/80+macrophages with an M1-like phenotype in the lumbar DRG appearing from 1 week after MIA injection, and that persisted till at least 4 weeks after MIA injection. Macrophages infiltrated DRG were also observed in the rat groove model of OA, 12 weeks after application of a groove at the femoral condyles. Systemic or local depletion of DRG macrophages during established MIA-induced OA completely ablated signs of pain, without affecting MIA-induced knee pathology. Intriguingly when monocytes/macrophages were depleted prior to induction of osteoarthritis, pain-like behaviors still developed, however these pain-like behaviors did not persist over time.In vitro,sensory neurons innervating the affected OA joint programmed macrophages into a M1 phenotype. Local repolarization of M1-like DRG macrophages towards M2 by intrathecal injection of M2 macrophages or anti-inflammatory cytokines resolved persistent OA-induced pain.Conclusion:Overall we show that macrophages infiltrate the DRG after knee damage and acquire a M1-like phenotype and maintain pain independent of the lesions in the knee joint. DRG-infiltrating macrophages are not required for induction of OA pain. Reprogramming M1-like DRG-infiltrating macrophages may represent a potential strategy to treat OA pain.Acknowledgments:This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreements No 814244 and No 642720. Dutch Arthritis SocietyDisclosure of Interests:Ramin Raoof: None declared, Christian Martin: None declared, Huub de Visser: None declared, Judith Prado: None declared, Sabine Versteeg: None declared, Anne Heinemans: None declared, Simon Mastbergen: None declared, Floris Lafeber Shareholder of: Co-founder and shareholder of ArthroSave BV, Niels Eijkelkamp: None declared


Author(s):  
Irene Riquelme ◽  
Miguel Angel Reina ◽  
André P. Boezaart ◽  
Francisco Reina ◽  
Virginia García-García ◽  
...  

2021 ◽  
Vol 22 (11) ◽  
pp. 5499
Author(s):  
Veronica Corsetti ◽  
Carla Perrone-Capano ◽  
Michael Sebastian Salazar Intriago ◽  
Elisabetta Botticelli ◽  
Giancarlo Poiana ◽  
...  

Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a “cholinergic locus”, and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.


Sign in / Sign up

Export Citation Format

Share Document